Solveeit Logo

Question

Question: n moles of an ideal monoatomic gas undergo a process in which temp charges with volume as T=KV^2, te...

n moles of an ideal monoatomic gas undergo a process in which temp charges with volume as T=KV^2, temp changes from T0 to 4T0 then

Answer

ΔU=(9/2) nRT_0, W=(3/2) nRT_0, Q=6 nR*T_0.

Explanation

Solution

Step 1. Relate Volume to Temperature

The process is given by

T=KV2.T = K V^2.

At the initial state:

T0=KVi2Vi=T0K.T_0 = K V_i^2 \quad \Longrightarrow \quad V_i = \sqrt{\frac{T_0}{K}}.

At the final state when T=4T0T = 4T_0:

4T0=KVf2Vf=4T0K=2T0K=2Vi.4T_0 = K V_f^2 \quad \Longrightarrow \quad V_f = \sqrt{\frac{4T_0}{K}} = 2\sqrt{\frac{T_0}{K}} = 2V_i.

Step 2. Change in Internal Energy

For a monatomic ideal gas, the internal energy is

U=32nRT.U = \frac{3}{2} n R T.

Thus, the change in internal energy is

ΔU=32nR(TfTi)=32nR(4T0T0)=32nR(3T0)=92nRT0.\Delta U = \frac{3}{2} n R (T_f - T_i) = \frac{3}{2} n R (4T_0 - T_0) = \frac{3}{2} n R (3T_0) = \frac{9}{2} n R T_0.

Step 3. Work Done in the Process

For a quasi–static process, the work done is

W=ViVfPdV.W = \int_{V_i}^{V_f} P\, dV.

Using the ideal gas law PV=nRTP V = n R T and substituting T=KV2T=K V^2, we get

P=nRTV=nR(KV2)V=nRKV.P = \frac{n R T}{V} = \frac{n R (K V^2)}{V} = n R K V.

Thus,

W=ViVfnRKVdV=nRK[V22]ViVf.W = \int_{V_i}^{V_f} n R K V\, dV = n R K \left[\frac{V^2}{2}\right]_{V_i}^{V_f}.

Substitute Vf=2ViV_f = 2V_i:

W=nRK((2Vi)2Vi22)=nRK(4Vi2Vi22)=nRK(3Vi22).W = n R K \left(\frac{(2V_i)^2 - V_i^2}{2}\right) = n R K \left(\frac{4V_i^2 - V_i^2}{2}\right) = n R K \left(\frac{3V_i^2}{2}\right).

Since T0=KVi2T_0 = K V_i^2, we have

W=32nRT0.W = \frac{3}{2} n R T_0.

Step 4. Heat Absorbed

Using the first law of thermodynamics,

Q=ΔU+W.Q = \Delta U + W.

Substitute the obtained values:

Q=92nRT0+32nRT0=6nRT0.Q = \frac{9}{2} n R T_0 + \frac{3}{2} n R T_0 = 6 n R T_0.