Solveeit Logo

Question

Question: $$N = \left[\frac{2023}{4202}\right] + \left[\frac{2023 \times 2}{4202}\right] + \dots + \left[\frac...

N=[20234202]+[2023×24202]++[2023×42014202],where [.] represents greatest integer function, then sum of digits of N is divisible byN = \left[\frac{2023}{4202}\right] + \left[\frac{2023 \times 2}{4202}\right] + \dots + \left[\frac{2023 \times 4201}{4202}\right], \text{where [.] represents greatest integer function, then sum of digits of N is divisible by}

Answer

21

Explanation

Solution

The problem asks us to find the sum of digits of the number NN, where NN is defined as: N=[20234202]+[2023×24202]++[2023×42014202]N = \left[\frac{2023}{4202}\right] + \left[\frac{2023 \times 2}{4202}\right] + \dots + \left[\frac{2023 \times 4201}{4202}\right] Here, [.][.] denotes the greatest integer function.

Let a=2023a = 2023 and b=4202b = 4202. The expression for NN can be written as: N=k=1b1[akb]N = \sum_{k=1}^{b-1} \left[\frac{ak}{b}\right]

This sum has a well-known property. If aa and bb are coprime integers (i.e., gcd(a,b)=1\gcd(a,b)=1), then the sum is given by the formula: k=1b1[akb]=(a1)(b1)2\sum_{k=1}^{b-1} \left[\frac{ak}{b}\right] = \frac{(a-1)(b-1)}{2}

First, let's check if a=2023a=2023 and b=4202b=4202 are coprime. Factorize aa: 2023=7×289=7×1722023 = 7 \times 289 = 7 \times 17^2 Factorize bb: 4202=2×21014202 = 2 \times 2101 To check if 2101 is prime, we can test divisibility by small prime numbers. 2101÷7300.142101 \div 7 \approx 300.14 2101÷11=1912101 \div 11 = 191 So, 4202=2×11×1914202 = 2 \times 11 \times 191. The prime factors of aa are {7,17}\{7, 17\}. The prime factors of bb are {2,11,191}\{2, 11, 191\}. Since there are no common prime factors, gcd(2023,4202)=1\gcd(2023, 4202) = 1. Thus, the formula is applicable.

Now, substitute the values of aa and bb into the formula for NN: N=(20231)(42021)2N = \frac{(2023-1)(4202-1)}{2} N=2022×42012N = \frac{2022 \times 4201}{2} N=1011×4201N = 1011 \times 4201

Next, calculate the value of NN: N=1011×4201N = 1011 \times 4201 N=(1000+11)×4201N = (1000 + 11) \times 4201 N=1000×4201+11×4201N = 1000 \times 4201 + 11 \times 4201 N=4201000+(10×4201+1×4201)N = 4201000 + (10 \times 4201 + 1 \times 4201) N=4201000+42010+4201N = 4201000 + 42010 + 4201 N=4201000+46211N = 4201000 + 46211 N=4247211N = 4247211

Finally, find the sum of the digits of NN: Sum of digits =4+2+4+7+2+1+1= 4 + 2 + 4 + 7 + 2 + 1 + 1 Sum of digits =21= 21

The question asks what the sum of digits of N is divisible by. The sum of digits is 21. The divisors of 21 are 1, 3, 7, and 21. Depending on the options provided in a multiple-choice question, any of these could be the correct answer. For example, if the options were 2, 3, 5, 9, then 3 would be the correct answer. If the options were 4, 6, 7, 8, then 7 would be the correct answer.

Given that no options are provided, we state the sum of digits and its properties. The sum of digits of N is 21, which is divisible by 3 and 7.