Solveeit Logo

Question

Physics Question on Surface tension

nn identical drops, each of capacitance CC and charged to a potential VV, coalesce to form a bigger drop. Then the ratio of the energy stored in the big drop to that in each small drop is

A

n5/3:1{{n}^{5/3}}:1

B

n4/3:1{{n}^{4/3}}:1

C

n:1n:1

D

n3:1{{n}^{3}}:1

Answer

n5/3:1{{n}^{5/3}}:1

Explanation

Solution

Volume of big drop =n×=n\times volume of small drop 43πR3=n×43πr3\frac{4}{3}\pi {{R}^{3}}=n\times \frac{4}{3}\pi {{r}^{3}} R=n1/3rR={{n}^{1/3}}r Capacitance of small drop, C=4πε0rC=4\pi {{\varepsilon }_{0}}r Capacitance of big drop, C=4πε0RC=4\pi {{\varepsilon }_{0}}R =4πε0n1/3r=4\pi {{\varepsilon }_{0}}{{n}^{1/3}}r C=n1/3CC={{n}^{1/3}}C The potential of small drop V=qC=q4πε0rV=\frac{q}{C}=\frac{q}{4\pi {{\varepsilon }_{0}}r} The potential of big drop V=nq(4πε0)n1/3rV=\frac{nq}{(4\pi {{\varepsilon }_{0}}){{n}^{1/3}}r} V=n2/3VV={{n}^{2/3}}V \therefore Energy of small drop =12CV2=\frac{1}{2}C{{V}^{2}} Energy of big drop =12CV2=\frac{1}{2}CV{{}^{2}} =12n1/3C(n2/3V)2=\frac{1}{2}{{n}^{1/3}}C{{({{n}^{2/3}}V)}^{2}} =n5/312CV2={{n}^{5/3}}\frac{1}{2}C{{V}^{2}} \therefore Energy(bigdrop)Energy(smalldrop)=n5/31\frac{Energ{{y}_{(big\,drop)}}}{Energ{{y}_{(small\,drop)}}}=\frac{{{n}^{5/3}}}{1}