Solveeit Logo

Question

Question: n-factor for the following reaction is: \({{Fe}}{{{S}}_{{2}}}\xrightarrow{{}}{{F}}{{{e}}_{{2}}}{{{...

n-factor for the following reaction is:
FeS2Fe2O3+SO2{{Fe}}{{{S}}_{{2}}}\xrightarrow{{}}{{F}}{{{e}}_{{2}}}{{{O}}_{{3}}}{{ + S}}{{{O}}_{{2}}}
A. 8
B. 9
C. 10
D. 11

Explanation

Solution

n- factor for acids is the number of H+{{{H}}^{{ + }}} ions that is produced in water and n-factor for the base is the number of OH{{O}}{{{H}}^{{ - }}} ions that is produced in water, it is possible to obtain equivalent mass by dividing molecular weight by n-factor.

Complete step by step answer:
Acids are defined as the ones that produce H+{{{H}}^{{ + }}} ions when replaced by 1mole{{1 mole}} of acid in the reaction. Bases are the ones that produce OH{{O}}{{{H}}^{{ - }}} ions when replaced by 1mole{{1 mole}} of base solution. For salts n-factor is the total moles of anionic/cationic charge replaced in 1mole{{1 mole}} of the salt.
Consider the given reaction
FeS2Fe2O3+SO2{{Fe}}{{{S}}_{{2}}}\xrightarrow{{}}{{F}}{{{e}}_{{2}}}{{{O}}_{{3}}}{{ + S}}{{{O}}_{{2}}}
2Fe2+Fe23++2enf=22=1{{2F}}{{{e}}^{{{2 + }}}}\xrightarrow{{}}{{F}}{{{e}}_{{2}}}^{{{3 + }}}{{ + 2}}{{{e}}^{{ - }}}{{ }}{{{n}}_{{f}}}{{ = }}\dfrac{{{2}}}{{{2}}}{{ = 1}}
S22Fe23++2enf=10{{{S}}_{{2}}}^{{{2 - }}}\xrightarrow{{}}{{F}}{{{e}}_{{2}}}^{{{3 + }}}{{ + 2}}{{{e}}^{{ - }}}{{ }}{{{n}}_{{f}}}{{ = 10}}

Thus the total n-factor=10+1=11

So, the correct answer is Option D.

Additional Information:
N-factor is used specially in physical chemistry to solve the numerical. N-factor for redox reaction is the change in the oxidation and reduction number on either side of the chemical reaction. In redox reaction n-factor is equal to the number of moles of electron lost or gained per mole
In case of acid, n-factor is the basicity of acid i.e., how many H+{{{H}}^{{ + }}} ions it gives in the water is its n-factor
Eg: HClH++Cl{{HCl}}\xrightarrow{{}}{{{H}}^{{ + }}}{{ + C}}{{{l}}^{{ - }}}here the nf=1{{{n}}_{{f}}}{{ = 1}}
H2SO42H++SO42{{{H}}_{{2}}}{{S}}{{{O}}_{{4}}}\xrightarrow{{}}{{2}}{{{H}}^{{ + }}}{{ + S}}{{{O}}_{{4}}}^{{{2 - }}} nf=2{{{n}}_{{f}}}{{ = 2}}
In case of base, now many OH{{O}}{{{H}}^{{ - }}} is given in water is its n-factor
NaOHNa++OH{{NaOH}}\xrightarrow{{}}{{N}}{{{a}}^{{ + }}}{{ + O}}{{{H}}^{{ - }}}
SO2+2NaOHH2O+Na2SO3{{S}}{{{O}}_{{2}}}{{ + 2NaOH}}\xrightarrow{{}}{{{H}}_{{2}}}{{O + N}}{{{a}}_{{2}}}{{S}}{{{O}}_{{3}}} nf=2{{{n}}_{{f}}}{{ = 2}}

Note: If an equivalent mass is to be calculated then we need the n- factor because Em=Mnf{{{E}}_{{m}}}{{ = }}\dfrac{{{M}}}{{{{{n}}_{{f}}}}}. Inorder to calculate the normality then we need to know the n- factor because Normality=Molarity×nfactor{{Normality = Molarity \times n - factor}}. N-factor concept is important in titrations too because it involves equivalent mass.