Solveeit Logo

Question

Physics Question on Dimensional Analysis

n=D[(n2n1)(x2x1)]n=-D\left[\frac{\left(n_{2}-n_{1}\right)}{\left(x_{2}-x_{1}\right)}\right] , where nn is number of particles in unit area perpendicular to xx-axis in unit time, n1n_1, n2n_2 are number of particles per unit volume, x2x_2 and x1x_1 are distance of two points from any point, then the dimension of DD is

A

[L2T1][L^2T^{-1}]

B

[L2T1][L^{-2}T^{-1}]

C

[L2T1][L^{-2}T^{1}]

D

[L3T1][L^3T^{-1}]

Answer

[L2T1][L^{-2}T^{-1}]

Explanation

Solution

[n]=1[Area×Time]=1[L2T]\left[n\right]=\frac{1}{\left[Area\,\times\,Time\right]}=\frac{1}{\left[L^{2}T\right]} =[L2T1]=\left[L^{-2}T^{-1}\right] [x2]=[x1]=[L]\left[x_{2}\right]=\left[x_{1}\right]=\left[L\right] and [n2n1]=1Volume=1[L3]=[L3];\left[n_{2}-n_{1}\right]=\frac{1}{Volume}=\frac{1}{\left[L^{3}\right]}=\left[L^{-3}\right]; [D]=[L2T1×LL3]\Rightarrow \left[D\right]=\left[\frac{L^{-2}T^{-1}\,\times\,L}{L^{-3}}\right] =[L2T1]=\left[L^{2}T^{-1}\right]