Solveeit Logo

Question

Question: $4 \sin \frac{2\pi}{7} - \tan \frac{\pi}{7} = \sqrt{7}$. ...

4sin2π7tanπ7=74 \sin \frac{2\pi}{7} - \tan \frac{\pi}{7} = \sqrt{7}.

Answer

True

Explanation

Solution

To verify the identity 4sin2π7tanπ7=74 \sin \frac{2\pi}{7} - \tan \frac{\pi}{7} = \sqrt{7}, we will use a known trigonometric identity related to angles of the form kπn\frac{k\pi}{n}.

Key Identities for n=7n=7:

  1. The product of sines: k=1n1sinkπn=n2n1\prod_{k=1}^{n-1} \sin \frac{k\pi}{n} = \frac{n}{2^{n-1}}. For n=7n=7: sinπ7sin2π7sin3π7sin4π7sin5π7sin6π7=7271=764\sin \frac{\pi}{7} \sin \frac{2\pi}{7} \sin \frac{3\pi}{7} \sin \frac{4\pi}{7} \sin \frac{5\pi}{7} \sin \frac{6\pi}{7} = \frac{7}{2^{7-1}} = \frac{7}{64}. Since sin(πx)=sinx\sin(\pi - x) = \sin x, we have: sin4π7=sin(π3π7)=sin3π7\sin \frac{4\pi}{7} = \sin (\pi - \frac{3\pi}{7}) = \sin \frac{3\pi}{7} sin5π7=sin(π2π7)=sin2π7\sin \frac{5\pi}{7} = \sin (\pi - \frac{2\pi}{7}) = \sin \frac{2\pi}{7} sin6π7=sin(ππ7)=sinπ7\sin \frac{6\pi}{7} = \sin (\pi - \frac{\pi}{7}) = \sin \frac{\pi}{7} So, the product becomes: (sinπ7sin2π7sin3π7)2=764(\sin \frac{\pi}{7} \sin \frac{2\pi}{7} \sin \frac{3\pi}{7})^2 = \frac{7}{64} Taking the square root (all sines are positive for angles in (0,π)(0, \pi)): sinπ7sin2π7sin3π7=78\sin \frac{\pi}{7} \sin \frac{2\pi}{7} \sin \frac{3\pi}{7} = \frac{\sqrt{7}}{8}. (Equation 1)

  2. The product of cosines: k=1n1coskπn=sin(nπ/2)2n1\prod_{k=1}^{n-1} \cos \frac{k\pi}{n} = \frac{\sin(n\pi/2)}{2^{n-1}} for odd nn. For n=7n=7: cosπ7cos2π7cos3π7cos4π7cos5π7cos6π7=sin(7π/2)271=sin(3π+π/2)64=sin(π/2)64=164\cos \frac{\pi}{7} \cos \frac{2\pi}{7} \cos \frac{3\pi}{7} \cos \frac{4\pi}{7} \cos \frac{5\pi}{7} \cos \frac{6\pi}{7} = \frac{\sin(7\pi/2)}{2^{7-1}} = \frac{\sin(3\pi + \pi/2)}{64} = \frac{-\sin(\pi/2)}{64} = -\frac{1}{64}. Since cos(πx)=cosx\cos(\pi - x) = -\cos x, we have: cos4π7=cos(π3π7)=cos3π7\cos \frac{4\pi}{7} = \cos (\pi - \frac{3\pi}{7}) = -\cos \frac{3\pi}{7} cos5π7=cos(π2π7)=cos2π7\cos \frac{5\pi}{7} = \cos (\pi - \frac{2\pi}{7}) = -\cos \frac{2\pi}{7} cos6π7=cos(ππ7)=cosπ7\cos \frac{6\pi}{7} = \cos (\pi - \frac{\pi}{7}) = -\cos \frac{\pi}{7} So, the product becomes: (cosπ7cos2π7cos3π7)(cos3π7)(cos2π7)(cosπ7)=164(\cos \frac{\pi}{7} \cos \frac{2\pi}{7} \cos \frac{3\pi}{7}) (-\cos \frac{3\pi}{7}) (-\cos \frac{2\pi}{7}) (-\cos \frac{\pi}{7}) = -\frac{1}{64} (cosπ7cos2π7cos3π7)2=164-(\cos \frac{\pi}{7} \cos \frac{2\pi}{7} \cos \frac{3\pi}{7})^2 = -\frac{1}{64} (cosπ7cos2π7cos3π7)2=164(\cos \frac{\pi}{7} \cos \frac{2\pi}{7} \cos \frac{3\pi}{7})^2 = \frac{1}{64} Taking the square root (all cosines are positive for angles in (0,π/2)(0, \pi/2), here π7,2π7,3π7\frac{\pi}{7}, \frac{2\pi}{7}, \frac{3\pi}{7} are all in (0,π/2)(0, \pi/2)): cosπ7cos2π7cos3π7=18\cos \frac{\pi}{7} \cos \frac{2\pi}{7} \cos \frac{3\pi}{7} = \frac{1}{8}. (Equation 2)

Deriving the Tangent Product Identity: Divide Equation 1 by Equation 2: sinπ7sin2π7sin3π7cosπ7cos2π7cos3π7=7/81/8\frac{\sin \frac{\pi}{7} \sin \frac{2\pi}{7} \sin \frac{3\pi}{7}}{\cos \frac{\pi}{7} \cos \frac{2\pi}{7} \cos \frac{3\pi}{7}} = \frac{\sqrt{7}/8}{1/8} tanπ7tan2π7tan3π7=7\tan \frac{\pi}{7} \tan \frac{2\pi}{7} \tan \frac{3\pi}{7} = \sqrt{7}. (Equation 3)

Verifying the Given Identity: Let A=π7A = \frac{\pi}{7}. The identity to verify is 4sin2AtanA=74 \sin 2A - \tan A = \sqrt{7}. Substitute 7\sqrt{7} from Equation 3 into the identity: 4sin2AtanA=tanAtan2Atan3A4 \sin 2A - \tan A = \tan A \tan 2A \tan 3A Rearrange the terms: 4sin2A=tanA+tanAtan2Atan3A4 \sin 2A = \tan A + \tan A \tan 2A \tan 3A 4sin2A=tanA(1+tan2Atan3A)4 \sin 2A = \tan A (1 + \tan 2A \tan 3A) Express tangents in terms of sines and cosines: 4sin2A=sinAcosA(1+sin2Asin3Acos2Acos3A)4 \sin 2A = \frac{\sin A}{\cos A} \left(1 + \frac{\sin 2A \sin 3A}{\cos 2A \cos 3A}\right) 4sin2A=sinAcosA(cos2Acos3A+sin2Asin3Acos2Acos3A)4 \sin 2A = \frac{\sin A}{\cos A} \left(\frac{\cos 2A \cos 3A + \sin 2A \sin 3A}{\cos 2A \cos 3A}\right) Use the cosine difference formula: cosXcosY+sinXsinY=cos(XY)\cos X \cos Y + \sin X \sin Y = \cos(X-Y). 4sin2A=sinAcosAcos(3A2A)cos2Acos3A4 \sin 2A = \frac{\sin A}{\cos A} \frac{\cos(3A - 2A)}{\cos 2A \cos 3A} 4sin2A=sinAcosAcosAcos2Acos3A4 \sin 2A = \frac{\sin A}{\cos A} \frac{\cos A}{\cos 2A \cos 3A} Cancel cosA\cos A: 4sin2A=sinAcos2Acos3A4 \sin 2A = \frac{\sin A}{\cos 2A \cos 3A} Multiply both sides by cos2Acos3A\cos 2A \cos 3A: 4sin2Acos2Acos3A=sinA4 \sin 2A \cos 2A \cos 3A = \sin A Use the double angle formula 2sinXcosX=sin2X2 \sin X \cos X = \sin 2X: 2(2sin2Acos2A)cos3A=sinA2 (2 \sin 2A \cos 2A) \cos 3A = \sin A 2sin4Acos3A=sinA2 \sin 4A \cos 3A = \sin A Use the product-to-sum formula 2sinXcosY=sin(X+Y)+sin(XY)2 \sin X \cos Y = \sin(X+Y) + \sin(X-Y): sin(4A+3A)+sin(4A3A)=sinA\sin(4A+3A) + \sin(4A-3A) = \sin A sin7A+sinA=sinA\sin 7A + \sin A = \sin A Subtract sinA\sin A from both sides: sin7A=0\sin 7A = 0 Since A=π7A = \frac{\pi}{7}, we have 7A=7×π7=π7A = 7 \times \frac{\pi}{7} = \pi. sinπ=0\sin \pi = 0. This is a true statement. Therefore, the original identity is correct.