Solveeit Logo

Question

Question: n=25, \(\sum{x}=125\), \(\sum{{{x}^{2}}}=650\), \(\sum{y}=100\), \(\sum{{{y}^{2}}}=460\), \(\sum{xy}...

n=25, x=125\sum{x}=125, x2=650\sum{{{x}^{2}}}=650, y=100\sum{y}=100, y2=460\sum{{{y}^{2}}}=460, xy=508\sum{xy}=508. It was observed that two pair of values of (x,y)\left( x,y \right) were copied as (6,14)\left( 6,14 \right) and (8,6)\left( 8,6 \right) instead of (8,12)\left( 8,12 \right), (6,8)\left( 6,8 \right). The correct correlation coefficient is
A. 0.6670.667
B. 0.870.87
C. 0.25-0.25
D. 0.3560.356

Explanation

Solution

In this problem we need to calculate the value of correct correlation coefficient for the given set of data with the given conditions. We can observe that some of the data is corrupted or copied wrong. So we will calculate the actual values of x\sum{x}, x2\sum{{{x}^{2}}}, y\sum{y}, y2\sum{{{y}^{2}}}, xy\sum{xy} by subtracting the respective values which are mistakenly copied and adding the actual values at the same time. After having the actual values of x\sum{x}, x2\sum{{{x}^{2}}}, y\sum{y}, y2\sum{{{y}^{2}}}, xy\sum{xy} for the true data set we will use the formula r=nxy(x)×(y)[nx2(x)2][ny2(y)2]r=\dfrac{n\sum{xy}-\left( \sum{x} \right)\times \left( \sum{y} \right)}{\sqrt{\left[ n\sum{{{x}^{2}}}-{{\left( \sum{x} \right)}^{2}} \right]\left[ n\sum{{{y}^{2}}}-{{\left( \sum{y} \right)}^{2}} \right]}} to find the correlation coefficient.

Complete step by step answer:
Given that, n=25n=25, x=125\sum{x}=125, x2=650\sum{{{x}^{2}}}=650, y=100\sum{y}=100, y2=460\sum{{{y}^{2}}}=460, xy=508\sum{xy}=508 and
two pair of values of (x,y)\left( x,y \right) were copied as (6,14)\left( 6,14 \right) and (8,6)\left( 8,6 \right) instead of (8,12)\left( 8,12 \right), (6,8)\left( 6,8 \right).
If the data set is copied as (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) instead of (x2,y2)\left( {{x}_{2}},{{y}_{2}} \right), then the respect values of x\sum{x} changed as
xact=xx1+x2\sum{{{x}_{act}}}=\sum{x}-{{x}_{1}}+{{x}_{2}}
So, the data set is copied (6,14)\left( 6,14 \right) and (8,6)\left( 8,6 \right) instead of (8,12)\left( 8,12 \right), (6,8)\left( 6,8 \right), then the values are modified as
xact=x68+8+6\sum{{{x}_{act}}}=\sum{x}-6-8+8+6
Substituting the value x=125\sum{x}=125 in the above equation, then we will get
xact=125+0 xact=125 \begin{aligned} & \sum{{{x}_{act}}}=125+0 \\\ & \Rightarrow \sum{{{x}_{act}}}=125 \\\ \end{aligned}
Now the actual or correct value of y\sum{y} is given by
yact=y146+12+8 yact=y yact=100 \begin{aligned} & \sum{{{y}_{act}}}=\sum{y}-14-6+12+8 \\\ & \Rightarrow \sum{{{y}_{act}}}=\sum{y} \\\ & \Rightarrow \sum{{{y}_{act}}}=100 \\\ \end{aligned}
Now the actual or correct value of x2\sum{{{x}^{2}}} is given by
x2act=x26282+62+82 x2act=x2 x2act=650 \begin{aligned} & \sum{{{x}^{2}}_{act}}=\sum{{{x}^{2}}}-{{6}^{2}}-{{8}^{2}}+{{6}^{2}}+{{8}^{2}} \\\ & \Rightarrow \sum{{{x}^{2}}_{act}}=\sum{{{x}^{2}}} \\\ & \Rightarrow \sum{{{x}^{2}}_{act}}=650 \\\ \end{aligned}
Now the actual or correct value of y2\sum{{{y}^{2}}} is given by
y2act=y214262+122+82 y2act=46024 y2act=436 \begin{aligned} & \sum{{{y}^{2}}_{act}}=\sum{{{y}^{2}}}-{{14}^{2}}-{{6}^{2}}+{{12}^{2}}+{{8}^{2}} \\\ & \Rightarrow \sum{{{y}^{2}}_{act}}=460-24 \\\ & \Rightarrow \sum{{{y}^{2}}_{act}}=436 \\\ \end{aligned}
Now the actual or correct value of xy\sum{xy} is given by
xyact=xy6×88×6+8×12+6×8 xyact=508+12 xyact=520 \begin{aligned} & \sum{x{{y}_{act}}}=\sum{xy}-6\times 8-8\times 6+8\times 12+6\times 8 \\\ & \Rightarrow \sum{x{{y}_{act}}}=508+12 \\\ & \Rightarrow \sum{x{{y}_{act}}}=520 \\\ \end{aligned}
From the all the above values the correlation coefficient will be calculated as
r=nxy(x)×(y)[nx2(x)2][ny2(y)2]r=\dfrac{n\sum{xy}-\left( \sum{x} \right)\times \left( \sum{y} \right)}{\sqrt{\left[ n\sum{{{x}^{2}}}-{{\left( \sum{x} \right)}^{2}} \right]\left[ n\sum{{{y}^{2}}}-{{\left( \sum{y} \right)}^{2}} \right]}}
Substituting all the actual or corrected values in the above equation, then we will get
r=25×520125×100(25×6501252)(25×4361002)r=\dfrac{25\times 520-125\times 100}{\sqrt{\left( 25\times 650-{{125}^{2}} \right)\left( 25\times 436-{{100}^{2}} \right)}}
Simplifying the above equation, then we will get
r=1300012500(1625015625)(1090010000) r=500625×900 r=50025×30 r=0.667 \begin{aligned} & r=\dfrac{13000-12500}{\sqrt{\left( 16250-15625 \right)\left( 10900-10000 \right)}} \\\ & \Rightarrow r=\dfrac{500}{\sqrt{625\times 900}} \\\ & \Rightarrow r=\dfrac{500}{25\times 30} \\\ & \Rightarrow r=0.667 \\\ \end{aligned}

So, the correct answer is “Option A”.

Note: In type of problem needs the student attention. While calculating the corrected values one may do a lot of mistakes like substituting the wrong values or use xx values instead of yy values or vice versa. So, one should be careful about substitution while calculating the corrected values.