Solveeit Logo

Question

Mathematics Question on Binomial theorem

n1Cr=(k28)nCr+1^{n-1}C_r = (k^2 - 8) ^{n}C_{r+1} if and only if:

A

22<k32\sqrt{2} < k ≤ 3

B

23<k322\sqrt{3} < k ≤ 3\sqrt{2}

C

23<k<332\sqrt{3} < k <3 \sqrt{3}

D

22<k<232\sqrt{2} < k < 2\sqrt{3}

Answer

22<k32\sqrt{2} < k ≤ 3

Explanation

Solution

Given: n1Cr=(k28)nCr+1n−1C_r = (k^2 − 8) ^nC_{r+1}
We know: n1Cr=(k28)nCr+1n−1C_r = (k^2 − 8) ^nC_{r+1}
For this expression to hold, k28k^2 − 8 must be positive:
k28>0k>22 or k<22k^2 − 8 > 0 \Rightarrow k > 2\sqrt{2} \text{ or } k < -2\sqrt{2}
Thus, k(,22)(22,)k \in (-\infty, -2\sqrt{2}) \cup (2\sqrt{2}, \infty)
Next, we check the range 3k3-3 \le k \le 3 to satisfy the constraint. Combining both conditions: k[22,3]k \in [2\sqrt{2}, 3]