Solveeit Logo

Question

Question: $(n-1)$ 2) sec1. sec2 + sec2. sec3 + sec3. sec4 = sin...

(n1)(n-1) 2) sec1. sec2 + sec2. sec3 + sec3. sec4 = sin

A

1^\circ

B

2^\circ

C

3^\circ

D

4^\circ

Answer

3^\circ

Explanation

Solution

The given equation is (n1)(n-1) 2) sec(1)sec(2)+sec(2)sec(3)+sec(3)sec(4)=sin(?)\sec(1^\circ) \sec(2^\circ) + \sec(2^\circ) \sec(3^\circ) + \sec(3^\circ) \sec(4^\circ) = \sin(?). The terms (n1)(n-1) and "2)" are extraneous. We need to find the angle for the sine function.

Let the sum be S=sec(1)sec(2)+sec(2)sec(3)+sec(3)sec(4)S = \sec(1^\circ) \sec(2^\circ) + \sec(2^\circ) \sec(3^\circ) + \sec(3^\circ) \sec(4^\circ). We use the identity secAsecB=tanBtanAsin(BA)\sec A \sec B = \frac{\tan B - \tan A}{\sin(B-A)}. For each term, BA=1B-A = 1^\circ. S=tan(2)tan(1)sin(1)+tan(3)tan(2)sin(1)+tan(4)tan(3)sin(1)S = \frac{\tan(2^\circ) - \tan(1^\circ)}{\sin(1^\circ)} + \frac{\tan(3^\circ) - \tan(2^\circ)}{\sin(1^\circ)} + \frac{\tan(4^\circ) - \tan(3^\circ)}{\sin(1^\circ)} This is a telescoping sum: S=1sin(1)[(tan(2)tan(1))+(tan(3)tan(2))+(tan(4)tan(3))]S = \frac{1}{\sin(1^\circ)} [(\tan(2^\circ) - \tan(1^\circ)) + (\tan(3^\circ) - \tan(2^\circ)) + (\tan(4^\circ) - \tan(3^\circ))] S=tan(4)tan(1)sin(1)S = \frac{\tan(4^\circ) - \tan(1^\circ)}{\sin(1^\circ)} Using tanBtanA=sin(BA)cosAcosB\tan B - \tan A = \frac{\sin(B-A)}{\cos A \cos B}: S=sin(41)cos(1)cos(4)sin(1)=sin(3)sin(1)cos(1)cos(4)S = \frac{\sin(4^\circ - 1^\circ)}{\cos(1^\circ) \cos(4^\circ) \sin(1^\circ)} = \frac{\sin(3^\circ)}{\sin(1^\circ) \cos(1^\circ) \cos(4^\circ)} Using sin(2θ)=2sinθcosθ\sin(2\theta) = 2\sin\theta\cos\theta, we have sin(1)cos(1)=12sin(2)\sin(1^\circ)\cos(1^\circ) = \frac{1}{2}\sin(2^\circ). S=sin(3)12sin(2)cos(4)=2sin(3)sin(2)cos(4)S = \frac{\sin(3^\circ)}{\frac{1}{2}\sin(2^\circ) \cos(4^\circ)} = \frac{2\sin(3^\circ)}{\sin(2^\circ)\cos(4^\circ)}

The value of SS is approximately 3, which cannot be equal to sin(?)\sin(?) as the maximum value of sine is 1. This indicates the question is ill-posed. However, if we interpret the question as asking for the most prominent angle in the simplified expression that could be related to the sine function, it is 33^\circ appearing in the numerator of S=sin(3)sin(1)cos(1)cos(4)S = \frac{\sin(3^\circ)}{\sin(1^\circ) \cos(1^\circ) \cos(4^\circ)}. Assuming a flawed question where the intended answer is derived from the structure, 33^\circ is the most plausible answer.