Solveeit Logo

Question

Question: $\mu(X)$ and $Var(X)$ represents the mean and variance of random variable $X$. If $Var(2X)=\frac{1}{...

μ(X)\mu(X) and Var(X)Var(X) represents the mean and variance of random variable XX. If Var(2X)=18Var(2X)=\frac{1}{8} and μ(x2)\mu(x^2) is 14\frac{1}{4}, then μ(4x)\mu(4x) is μ\mu. The value of 2μ22\mu^2 is equal to

A

7

B

14

C

49

D

98

Answer

7

Explanation

Solution

Given Var(2X)=18Var(2X) = \frac{1}{8} and μ(x2)=E(X2)=14\mu(x^2) = E(X^2) = \frac{1}{4}.

Using the property Var(aX)=a2Var(X)Var(aX) = a^2 Var(X): Var(2X)=22Var(X)=4Var(X)Var(2X) = 2^2 Var(X) = 4 Var(X). So, 4Var(X)=184 Var(X) = \frac{1}{8}, which implies Var(X)=132Var(X) = \frac{1}{32}.

Using the property Var(X)=E(X2)[E(X)]2Var(X) = E(X^2) - [E(X)]^2: 132=14[E(X)]2\frac{1}{32} = \frac{1}{4} - [E(X)]^2. Rearranging, we get [E(X)]2=14132=832132=732[E(X)]^2 = \frac{1}{4} - \frac{1}{32} = \frac{8}{32} - \frac{1}{32} = \frac{7}{32}.

We are given μ(4x)=μ\mu(4x) = \mu, which means μ=E(4X)\mu = E(4X). Using the property E(aX)=aE(X)E(aX) = a E(X): μ=4E(X)\mu = 4 E(X).

Now we need to find 2μ22\mu^2: μ2=(4E(X))2=16[E(X)]2\mu^2 = (4 E(X))^2 = 16 [E(X)]^2. Substitute the value of [E(X)]2[E(X)]^2: μ2=16×732=1632×7=12×7=72\mu^2 = 16 \times \frac{7}{32} = \frac{16}{32} \times 7 = \frac{1}{2} \times 7 = \frac{7}{2}.

Finally, 2μ2=2×72=72\mu^2 = 2 \times \frac{7}{2} = 7.

The value of 2μ22\mu^2 is 7.