Question
Question: $\mu(X)$ and $Var(X)$ represents the mean and variance of random variable $X$. If $Var(2X)=\frac{1}{...
μ(X) and Var(X) represents the mean and variance of random variable X. If Var(2X)=81 and μ(x2) is 41, then μ(4x) is μ. The value of 2μ2 is equal to

A
7
B
14
C
49
D
98
Answer
7
Explanation
Solution
Given Var(2X)=81 and μ(x2)=E(X2)=41.
Using the property Var(aX)=a2Var(X): Var(2X)=22Var(X)=4Var(X). So, 4Var(X)=81, which implies Var(X)=321.
Using the property Var(X)=E(X2)−[E(X)]2: 321=41−[E(X)]2. Rearranging, we get [E(X)]2=41−321=328−321=327.
We are given μ(4x)=μ, which means μ=E(4X). Using the property E(aX)=aE(X): μ=4E(X).
Now we need to find 2μ2: μ2=(4E(X))2=16[E(X)]2. Substitute the value of [E(X)]2: μ2=16×327=3216×7=21×7=27.
Finally, 2μ2=2×27=7.
The value of 2μ2 is 7.