Solveeit Logo

Question

Question: Multiplication of a determinant by a scaler...

Multiplication of a determinant by a scaler

Answer

No option provided as this is a descriptive question.

Explanation

Solution

When a determinant is multiplied by a scalar kk, the scalar multiplies only one row or only one column of the determinant. The value of the determinant is then kk times the original value.

Let DD be an n×nn \times n determinant:

a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}$$ If we multiply the determinant $ D $ by a scalar $ k $, the result $ k \cdot D $ can be represented by multiplying any single row (say, the $ i $-th row) by $ k $: $$k \cdot D = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ k a_{i1} & k a_{i2} & \dots & k a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}$$ Alternatively, it can be represented by multiplying any single column (say, the $ j $-th column) by $ k $: $$k \cdot D = \begin{vmatrix} a_{11} & \dots & k a_{1j} & \dots & a_{1n} \\ a_{21} & \dots & k a_{2j} & \dots & a_{2n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n1} & \dots & k a_{nj} & \dots & a_{nn} \end{vmatrix}$$ This property distinguishes scalar multiplication of a determinant from scalar multiplication of a matrix, where every element of the matrix is multiplied by the scalar. **Example:** Let $ D = \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} $. The value of $ D = (1)(4) - (2)(3) = 4 - 6 = -2 $. If we multiply $ D $ by a scalar $ k=5 $, then $ k \cdot D = 5 \times (-2) = -10 $. Applying the rule, we can multiply the first row by 5: $$\begin{vmatrix} 5 \times 1 & 5 \times 2 \\ 3 & 4 \end{vmatrix} = \begin{vmatrix} 5 & 10 \\ 3 & 4 \end{vmatrix} = (5)(4) - (10)(3) = 20 - 30 = -10$$ Or, we can multiply the second column by 5: $$\begin{vmatrix} 1 & 5 \times 2 \\ 3 & 5 \times 4 \end{vmatrix} = \begin{vmatrix} 1 & 10 \\ 3 & 20 \end{vmatrix} = (1)(20) - (10)(3) = 20 - 30 = -10$$ Both results match $ k \cdot D $. The final answer is $\boxed{No\ option\ provided}$ **Explanation of the solution:** When a determinant is multiplied by a scalar, the scalar multiplies only one row or only one column of the determinant.