Solveeit Logo

Question

Question: If A & B are acute angles such the A + B and A – B satisfy the equation $tan^2 \theta - 4 \tan \thet...

If A & B are acute angles such the A + B and A – B satisfy the equation tan2θ4tanθ+1=0tan^2 \theta - 4 \tan \theta + 1 = 0 then

A

A = π/4\pi/4

B

A = π/6\pi/6

C

B = π/4\pi/4

D

B = π/6\pi/6

Answer

A = π/4\pi/4 and B = π/6\pi/6

Explanation

Solution

Let tan(A+B)tan(A+B) and tan(AB)tan(A-B) be the roots of the quadratic equation tan2θ4tanθ+1=0tan^2 \theta - 4 \tan \theta + 1 = 0.

From Vieta's formulas: Sum of roots: tan(A+B)+tan(AB)=4tan(A+B) + tan(A-B) = 4 Product of roots: tan(A+B)tan(AB)=1tan(A+B) \cdot tan(A-B) = 1

Using the product of roots: tanA+tanB1tanAtanBtanAtanB1+tanAtanB=1\frac{tan A + tan B}{1 - tan A tan B} \cdot \frac{tan A - tan B}{1 + tan A tan B} = 1 tan2Atan2B1tan2Atan2B=1\frac{tan^2 A - tan^2 B}{1 - tan^2 A tan^2 B} = 1 tan2Atan2B=1tan2Atan2Btan^2 A - tan^2 B = 1 - tan^2 A tan^2 B tan2A+tan2Atan2B=1+tan2Btan^2 A + tan^2 A tan^2 B = 1 + tan^2 B tan2A(1+tan2B)=1+tan2Btan^2 A (1 + tan^2 B) = 1 + tan^2 B

Since A and B are acute angles, tanB>0tan B > 0, so 1+tan2B01 + tan^2 B \neq 0. Dividing by (1+tan2B)(1 + tan^2 B), we get: tan2A=1tan^2 A = 1 Since A is an acute angle, tanA>0tan A > 0, so tanA=1tan A = 1. This implies A=π/4A = \pi/4.

Now, substitute A=π/4A = \pi/4 into the sum of roots equation: tan(A+B)+tan(AB)=4tan(A+B) + tan(A-B) = 4 tan(π/4+B)+tan(π/4B)=4tan(\pi/4 + B) + tan(\pi/4 - B) = 4 Using the tangent addition and subtraction formulas: tan(π/4)+tanB1tan(π/4)tanB+tan(π/4)tanB1+tan(π/4)tanB=4\frac{tan(\pi/4) + tan B}{1 - tan(\pi/4) tan B} + \frac{tan(\pi/4) - tan B}{1 + tan(\pi/4) tan B} = 4 1+tanB1tanB+1tanB1+tanB=4\frac{1 + tan B}{1 - tan B} + \frac{1 - tan B}{1 + tan B} = 4 Let t=tanBt = tan B. (1+t)2+(1t)2(1t)(1+t)=4\frac{(1+t)^2 + (1-t)^2}{(1-t)(1+t)} = 4 (1+2t+t2)+(12t+t2)1t2=4\frac{(1 + 2t + t^2) + (1 - 2t + t^2)}{1 - t^2} = 4 2+2t21t2=4\frac{2 + 2t^2}{1 - t^2} = 4 2(1+t2)=4(1t2)2(1 + t^2) = 4(1 - t^2) 1+t2=2(1t2)1 + t^2 = 2(1 - t^2) 1+t2=22t21 + t^2 = 2 - 2t^2 3t2=13t^2 = 1 t2=1/3t^2 = 1/3 tan2B=1/3tan^2 B = 1/3 Since B is an acute angle, tanB>0tan B > 0, so tanB=1/3tan B = 1/\sqrt{3}. This implies B=π/6B = \pi/6.

Thus, A=π/4A = \pi/4 and B=π/6B = \pi/6.