Solveeit Logo

Question

Question: A chain of mass m and length ($l_1 + l_2$) are placed on smooth hemisphere of radius R, as shown in ...

A chain of mass m and length (l1+l2l_1 + l_2) are placed on smooth hemisphere of radius R, as shown in figure. Find velocity of the chain after it completely slip on to the horizontal surface :

A

2gR2l1+l2[sinl1R+sinl2R]1/2\sqrt{\frac{2gR^2}{l_1 + l_2}}[\sin{\frac{l_1}{R}} + \sin{\frac{l_2}{R}}]^{1/2}

B

2gR2l1+l2\sqrt{\frac{2gR^2}{l_1 + l_2}}

C

gR2l1+l2sinl1+l2R]1/2\sqrt{\frac{gR^2}{l_1 + l_2}}\sin{\frac{l_1 + l_2}{R}}]^{1/2}

D

gR2l1+l2[cosl1Rcosl1+l2R]1/2\sqrt{\frac{gR^2}{l_1 + l_2}}[\cos{\frac{l_1}{R}} - \cos{\frac{l_1 + l_2}{R}}]^{1/2}

Answer

2gR2l1+l2[sinl1R+sinl2R]1/2\sqrt{\frac{2gR^2}{l_1 + l_2}}[\sin{\frac{l_1}{R}} + \sin{\frac{l_2}{R}}]^{1/2}

Explanation

Solution

Concept: Conservation of Mechanical Energy. The smooth surface implies no energy loss due to friction.

1. Initial State: The chain is initially at rest, so its initial kinetic energy (KiK_i) is zero. Ki=0K_i = 0

To find the initial potential energy (UiU_i), consider a small element of the chain of mass dmdm at an angle θ\theta from the vertical. The linear mass density of the chain is λ=ml1+l2\lambda = \frac{m}{l_1 + l_2}. An element of length dl=Rdθdl = R d\theta has mass dm=λdl=ml1+l2Rdθdm = \lambda dl = \frac{m}{l_1 + l_2} R d\theta. The height of this element above the horizontal surface (chosen as the reference for potential energy, h=0h=0) is h=Rcosθh = R \cos\theta. The potential energy of this element is dU=dmgh=(ml1+l2Rdθ)g(Rcosθ)=mgR2l1+l2cosθdθdU = dm \cdot g \cdot h = \left(\frac{m}{l_1 + l_2} R d\theta\right) g (R \cos\theta) = \frac{m g R^2}{l_1 + l_2} \cos\theta d\theta.

The chain spans angular lengths corresponding to l1l_1 and l2l_2. Let θ1=l1/R\theta_1 = l_1/R and θ2=l2/R\theta_2 = l_2/R. The chain extends from angle θ2-\theta_2 to θ1\theta_1 with respect to the vertical axis. Integrating dUdU over the length of the chain: Ui=l2/Rl1/RmgR2l1+l2cosθdθ=mgR2l1+l2[sinθ]l2/Rl1/RU_i = \int_{-l_2/R}^{l_1/R} \frac{m g R^2}{l_1 + l_2} \cos\theta d\theta = \frac{m g R^2}{l_1 + l_2} [\sin\theta]_{-l_2/R}^{l_1/R} Ui=mgR2l1+l2(sin(l1/R)sin(l2/R))U_i = \frac{m g R^2}{l_1 + l_2} (\sin(l_1/R) - \sin(-l_2/R)) Since sin(x)=sin(x)\sin(-x) = -\sin(x), we get: Ui=mgR2l1+l2(sin(l1/R)+sin(l2/R))U_i = \frac{m g R^2}{l_1 + l_2} (\sin(l_1/R) + \sin(l_2/R))

2. Final State: When the chain completely slips onto the horizontal surface, its entire length is at the reference height, so its final potential energy (UfU_f) is zero. Uf=0U_f = 0 The chain moves with a uniform velocity vv. Its final kinetic energy (KfK_f) is: Kf=12mv2K_f = \frac{1}{2} m v^2

3. Conservation of Mechanical Energy: According to the principle of conservation of mechanical energy: Ki+Ui=Kf+UfK_i + U_i = K_f + U_f 0+mgR2l1+l2(sin(l1/R)+sin(l2/R))=12mv2+00 + \frac{m g R^2}{l_1 + l_2} (\sin(l_1/R) + \sin(l_2/R)) = \frac{1}{2} m v^2 + 0

Cancel mm from both sides: gR2l1+l2(sin(l1/R)+sin(l2/R))=12v2\frac{g R^2}{l_1 + l_2} (\sin(l_1/R) + \sin(l_2/R)) = \frac{1}{2} v^2 v2=2gR2l1+l2(sin(l1/R)+sin(l2/R))v^2 = \frac{2 g R^2}{l_1 + l_2} (\sin(l_1/R) + \sin(l_2/R)) v=2gR2l1+l2(sin(l1/R)+sin(l2/R))v = \sqrt{\frac{2 g R^2}{l_1 + l_2} (\sin(l_1/R) + \sin(l_2/R))}