Solveeit Logo

Question

Question: Locus of the centre of the circle passing through the vertex and the mid-points of perpendicular cho...

Locus of the centre of the circle passing through the vertex and the mid-points of perpendicular chords from the vertex of the parabola y2=4axy^2=4ax is

A

is a parabola with vertex (-a, a)

B

is a parabola with latus rectum a

C

is a parabola with vertex (2a, 0)

D

is a parabola with latus rectum a2\frac{a}{2}

Answer

is a parabola with latus rectum a and is a parabola with vertex (2a, 0)

Explanation

Solution

Let the equation of the parabola be y2=4axy^2 = 4ax. Its vertex is V(0,0)V(0,0).
Let the equation of the circle be x2+y22hx2ky+c=0x^2 + y^2 - 2hx - 2ky + c = 0.
Since the circle passes through the vertex V(0,0)V(0,0), substituting (0,0)(0,0) into the circle's equation gives:
02+022h(0)2k(0)+c=0    c=00^2 + 0^2 - 2h(0) - 2k(0) + c = 0 \implies c = 0.
So, the equation of the circle is x2+y22hx2ky=0x^2 + y^2 - 2hx - 2ky = 0. The center of this circle is (h,k)(h,k).

Consider two chords from the vertex, VPVP and VQVQ, which are perpendicular.
Let P=(at12,2at1)P = (at_1^2, 2at_1) and Q=(at22,2at2)Q = (at_2^2, 2at_2) be points on the parabola.
The slope of VPVP is m1=2at10at120=2t1m_1 = \frac{2at_1 - 0}{at_1^2 - 0} = \frac{2}{t_1}.
The slope of VQVQ is m2=2at20at220=2t2m_2 = \frac{2at_2 - 0}{at_2^2 - 0} = \frac{2}{t_2}.
Since VPVQVP \perp VQ, their slopes satisfy m1m2=1m_1 m_2 = -1:
(2t1)(2t2)=1    4t1t2=1    t1t2=4\left(\frac{2}{t_1}\right) \left(\frac{2}{t_2}\right) = -1 \implies \frac{4}{t_1 t_2} = -1 \implies t_1 t_2 = -4.

The circle passes through the mid-points of these perpendicular chords.
Let M1M_1 be the midpoint of VPVP: M1=(0+at122,0+2at12)=(at122,at1)M_1 = \left(\frac{0+at_1^2}{2}, \frac{0+2at_1}{2}\right) = \left(\frac{at_1^2}{2}, at_1\right).
Let M2M_2 be the midpoint of VQVQ: M2=(0+at222,0+2at22)=(at222,at2)M_2 = \left(\frac{0+at_2^2}{2}, \frac{0+2at_2}{2}\right) = \left(\frac{at_2^2}{2}, at_2\right).

Since M1M_1 lies on the circle x2+y22hx2ky=0x^2 + y^2 - 2hx - 2ky = 0:
(at122)2+(at1)22h(at122)2k(at1)=0\left(\frac{at_1^2}{2}\right)^2 + (at_1)^2 - 2h\left(\frac{at_1^2}{2}\right) - 2k(at_1) = 0
a2t144+a2t12hat122kat1=0\frac{a^2t_1^4}{4} + a^2t_1^2 - hat_1^2 - 2kat_1 = 0.
Assuming t10t_1 \neq 0 (if t1=0t_1=0, PP is the vertex, VPVP is not a chord in the sense of a line segment for which we can find a midpoint distinct from V), we can divide by at1at_1:
at134+at1ht12k=0\frac{at_1^3}{4} + at_1 - ht_1 - 2k = 0
a4t13+(ah)t1=2k\frac{a}{4}t_1^3 + (a-h)t_1 = 2k (Equation 1)

Similarly, for M2M_2 lying on the circle:
a4t23+(ah)t2=2k\frac{a}{4}t_2^3 + (a-h)t_2 = 2k (Equation 2)

Subtract Equation 2 from Equation 1:
a4(t13t23)+(ah)(t1t2)=0\frac{a}{4}(t_1^3 - t_2^3) + (a-h)(t_1 - t_2) = 0.
Since t1t2t_1 \neq t_2 (otherwise P=QP=Q, which means VPVP and VQVQ are the same chord, and cannot be perpendicular unless a=0a=0), we can divide by (t1t2)(t_1 - t_2):
a4(t12+t1t2+t22)+(ah)=0\frac{a}{4}(t_1^2 + t_1 t_2 + t_2^2) + (a-h) = 0.
Substitute t1t2=4t_1 t_2 = -4:
a4(t124+t22)+(ah)=0\frac{a}{4}(t_1^2 - 4 + t_2^2) + (a-h) = 0
a4((t1+t2)22t1t24)+(ah)=0\frac{a}{4}((t_1+t_2)^2 - 2t_1t_2 - 4) + (a-h) = 0
a4((t1+t2)22(4)4)+(ah)=0\frac{a}{4}((t_1+t_2)^2 - 2(-4) - 4) + (a-h) = 0
a4((t1+t2)2+84)+(ah)=0\frac{a}{4}((t_1+t_2)^2 + 8 - 4) + (a-h) = 0
a4((t1+t2)2+4)+(ah)=0\frac{a}{4}((t_1+t_2)^2 + 4) + (a-h) = 0.
Multiply by 4:
a((t1+t2)2+4)+4(ah)=0a((t_1+t_2)^2 + 4) + 4(a-h) = 0
a(t1+t2)2+4a+4a4h=0a(t_1+t_2)^2 + 4a + 4a - 4h = 0
a(t1+t2)2=4h8aa(t_1+t_2)^2 = 4h - 8a (Equation 3)

Now, multiply Equation 1 by t2t_2:
a4t13t2+(ah)t1t2=2kt2\frac{a}{4}t_1^3 t_2 + (a-h)t_1 t_2 = 2kt_2.
Substitute t1t2=4t_1 t_2 = -4:
a4t12(4)+(ah)(4)=2kt2\frac{a}{4}t_1^2(-4) + (a-h)(-4) = 2kt_2
at124(ah)=2kt2-at_1^2 - 4(a-h) = 2kt_2 (Equation 4)

Multiply Equation 2 by t1t_1:
a4t23t1+(ah)t2t1=2kt1\frac{a}{4}t_2^3 t_1 + (a-h)t_2 t_1 = 2kt_1.
Substitute t1t2=4t_1 t_2 = -4:
a4t22(4)+(ah)(4)=2kt1\frac{a}{4}t_2^2(-4) + (a-h)(-4) = 2kt_1
at224(ah)=2kt1-at_2^2 - 4(a-h) = 2kt_1 (Equation 5)

Add Equation 4 and Equation 5:
a(t12+t22)8(ah)=2k(t1+t2)-a(t_1^2 + t_2^2) - 8(a-h) = 2k(t_1+t_2)
a((t1+t2)22t1t2)8(ah)=2k(t1+t2)-a((t_1+t_2)^2 - 2t_1t_2) - 8(a-h) = 2k(t_1+t_2)
a((t1+t2)22(4))8(ah)=2k(t1+t2)-a((t_1+t_2)^2 - 2(-4)) - 8(a-h) = 2k(t_1+t_2)
a((t1+t2)2+8)8(ah)=2k(t1+t2)-a((t_1+t_2)^2 + 8) - 8(a-h) = 2k(t_1+t_2) (Equation 6)

Let S=t1+t2S = t_1+t_2.
From Equation 3: aS2=4h8aaS^2 = 4h - 8a.
From Equation 6: a(S2+8)8(ah)=2kS-a(S^2+8) - 8(a-h) = 2kS.
Substitute S2=4h8aaS^2 = \frac{4h-8a}{a} into Equation 6:
a(4h8aa+8)8a+8h=2kS-a\left(\frac{4h-8a}{a} + 8\right) - 8a + 8h = 2kS
(4h8a+8a)8a+8h=2kS-(4h-8a + 8a) - 8a + 8h = 2kS
4h8a+8h=2kS-4h - 8a + 8h = 2kS
4h8a=2kS4h - 8a = 2kS
2h4a=kS2h - 4a = kS.

If k0k \neq 0, then S=2h4akS = \frac{2h-4a}{k}.
Substitute this expression for SS into aS2=4h8aaS^2 = 4h-8a:
a(2h4ak)2=4h8aa\left(\frac{2h-4a}{k}\right)^2 = 4h-8a
a4(h2a)2k2=4(h2a)a\frac{4(h-2a)^2}{k^2} = 4(h-2a).
If h2a0h-2a \neq 0, we can divide by 4(h2a)4(h-2a):
ah2ak2=1    k2=a(h2a)a\frac{h-2a}{k^2} = 1 \implies k^2 = a(h-2a).

If h2a=0h-2a = 0, then h=2ah=2a. From aS2=4h8aaS^2 = 4h-8a, we get aS2=4(2a)8a=0aS^2 = 4(2a)-8a=0, so S=0S=0.
From 2h4a=kS2h-4a=kS, we get 2(2a)4a=k(0)2(2a)-4a=k(0), which is 0=00=0.
From Equation 1: a4t13+(ah)t1=2k\frac{a}{4}t_1^3 + (a-h)t_1 = 2k. Substitute h=2ah=2a:
a4t13+(a2a)t1=2k    a4t13at1=2k\frac{a}{4}t_1^3 + (a-2a)t_1 = 2k \implies \frac{a}{4}t_1^3 - at_1 = 2k.
Since S=t1+t2=0S=t_1+t_2=0, t2=t1t_2=-t_1. And t1t2=4    t1(t1)=4    t12=4t_1 t_2 = -4 \implies t_1(-t_1)=-4 \implies t_1^2=4.
So t13=t1t12=4t1t_1^3 = t_1 \cdot t_1^2 = 4t_1.
Substituting t13=4t1t_1^3=4t_1 into the equation for kk:
a4(4t1)at1=2k    at1at1=2k    0=2k    k=0\frac{a}{4}(4t_1) - at_1 = 2k \implies at_1 - at_1 = 2k \implies 0 = 2k \implies k=0.
So, when h=2ah=2a, k=0k=0. The point (2a,0)(2a,0) satisfies k2=a(h2a)k^2 = a(h-2a), as 02=a(2a2a)=00^2 = a(2a-2a)=0.
Thus, the locus of the center (h,k)(h,k) is k2=a(h2a)k^2 = a(h-2a).
Replacing (h,k)(h,k) with (x,y)(x,y), the locus is y2=a(x2a)y^2 = a(x-2a).

This is the equation of a parabola.
Its vertex is (2a,0)(2a,0).
Its latus rectum is aa.

The locus of the centre of the circle is the parabola y2=a(x2a)y^2 = a(x-2a).
This parabola has:

  • Vertex at (2a,0)(2a,0).
  • Latus rectum equal to aa. Therefore, options (B) and (C) are correct.