Solveeit Logo

Question

Physics Question on Motion in a Straight Line

Motion of a particle is given by equation S=(3t3+7t2+14t+8) mS=(3t^3+7t^2+14t+8)\ m, The value of acceleration of the particle at t=1 sect=1 \ sec is:

A

10 m/s210\ m/s^2

B

32 m/s232 \ m/s^2

C

23 m/s223\ m/s^2

D

16 m/s16\ m/s

Answer

32 m/s232 \ m/s^2

Explanation

Solution

v=dsdtv =\frac {ds}{dt}

v=ddt(3t3+7t2+14t+8)v = \frac {d}{dt} (3t^3+7t^2+14t+8)

v=9t2+14t+14v =9t^2+14t+14

a=dvdta=\frac {dv}{dt}

a=a = ddt(9t2+14t+14)\frac {d}{dt}( 9t^2+14t+14)

a=18t+14a =18t+14

at, t=1 secat,\ t=1\ sec

a=32 ms2a=32\ ms^{-2}

So, the correct option is (B): 32 m/s232 \ m/s^2