Solveeit Logo

Question

Physics Question on Electromagnetic waves

Monochromatic light of frequency 6×10146 \times 10^{14} Hz is produced by a laser. The power emitted is 2×1032 \times 10^{-3} W. How many photons per second on average are emitted by the source.(Given h=6.63×1034Jsh = 6.63 \times 10^{-34} \, \text{Js})

A

9×10189 \times 10^{18}

B

6×10156 \times 10^{15}

C

5×10155 \times 10^{15}

D

7×10167 \times 10^{16}

Answer

5×10155 \times 10^{15}

Explanation

Solution

Given: - Frequency of light: ν=6×1014Hz\nu = 6 \times 10^{14} \, \text{Hz} - Power emitted by the source: P=2×103WP = 2 \times 10^{-3} \, \text{W} - Planck's constant: h=6.63×1034Jsh = 6.63 \times 10^{-34} \, \text{Js}

Step 1: Calculating the Energy of One Photon

The energy EE of a photon is given by:

E=hνE = h\nu

Substituting the given values:

E=6.63×1034×6×1014JE = 6.63 \times 10^{-34} \times 6 \times 10^{14} \, \text{J} E=3.978×1019JE = 3.978 \times 10^{-19} \, \text{J}

Rounding off:

E4×1019JE \approx 4 \times 10^{-19} \, \text{J}

Step 2: Calculating the Number of Photons Emitted per Second

The number of photons emitted per second (nn) is given by:

n=PEn = \frac{P}{E}

Substituting the given values:

n=2×1034×1019n = \frac{2 \times 10^{-3}}{4 \times 10^{-19}} n=24×1016n = \frac{2}{4} \times 10^{16} n=0.5×1016n = 0.5 \times 10^{16} n=5×1015n = 5 \times 10^{15}

Conclusion: The number of photons emitted per second by the source is 5×10155 \times 10^{15}.