Solveeit Logo

Question

Question: Moment of inertia of a thin rod of mass m and length l about at axis passing through a point \( \dfr...

Moment of inertia of a thin rod of mass m and length l about at axis passing through a point l4 \dfrac { l }{ 4 } from one and perpendicular to the rod is:
A.ml212A. \dfrac { m{ l }^{ 2 } }{ 12 }
B.ml213B. \dfrac { m{ l }^{ 2 } }{ 13 }
C.7ml248C. \dfrac { 7m{ l }^{ 2 } }{ 48 }
D.ml29D. \dfrac { m{ l }^{ 2 } }{ 9 }

Explanation

Solution

Use the theorem of parallel axes. Substitute the values in the formula and get a moment of inertia of a thin rod of mass m and length l about at the axis passing through a point l4 \dfrac { l }{ 4 } from one and perpendicular to the rod.

Formula used:
I=ICM+md2I ={ I }_{ CM } + m{ d }^{ 2 }

Complete answer:

Given: d=l4d= \dfrac { l }{ 4 }
According to the theorem of parallel axes,
I=ICM+md2I= { I }_{ CM } + m{ d }^{ 2 } …(1)
where, I: Moment of inertia of thin rod
ICM{ I }_{ CM }: Moment of Inertia at center of mass
But, we know ICM=112ml2{ I }_{ CM } = \dfrac { 1 }{ 12 } m{ l }^{ 2 }
Therefore, substituting the values in the equation. (1) we get,
I=112ml2+m(l4)2I = \dfrac { 1 }{ 12 } m{ l }^{ 2 } + m{ \left( \dfrac { l }{ 4 } \right) }^{ 2 }
I=ml212+ml216\therefore I = \dfrac { m{ l }^{ 2 } }{ 12 } + \dfrac { m{ l }^{ 2 } }{ 16 }
I=7ml248\therefore I= \dfrac { 7m{ l }^{ 2 } }{ 48 }
Therefore, Moment of inertia of a thin rod of mass m and length l about at axis passing through a point l4 \dfrac { l }{ 4 } from one and perpendicular to the rod is I=7ml248I = \dfrac { 7m{ l }^{ 2 } }{ 48 }.

So, the correct answer is “Option C”.

Note:
For a uniform rod with negligible thickness, the moment of inertia about its center of mass is ICM=112ml2{ I }_{ CM } = \dfrac { 1 }{ 12 } m{ l }^{ 2 }. And the moment of inertia about the end of the rod is Iend=13ml2{ I }_{ end } = \dfrac { 1 }{ 3 } m{ l }^{ 2 }.