Solveeit Logo

Question

Question: The ratio of the RMS speeds of $CH_4$ at $T$ and $SO_2$ at 300 K is 4: 1. The average kinetic energy...

The ratio of the RMS speeds of CH4CH_4 at TT and SO2SO_2 at 300 K is 4: 1. The average kinetic energy per mole of CH4CH_4 is

A

3600 cal

B

1200 cal

C

900 cal

D

2400 cal

Answer

3600 cal

Explanation

Solution

The RMS speed is given by vrms=3RTMv_{rms} = \sqrt{\frac{3RT}{M}}. The average kinetic energy per mole is KEmole=32RTKE_{mole} = \frac{3}{2}RT. Molar masses: MCH4=16M_{CH_4} = 16 g/mol, MSO2=64M_{SO_2} = 64 g/mol. Ratio of RMS speeds: vrms,CH4vrms,SO2=TCH4MCH4MSO2TSO2=4\frac{v_{rms, CH_4}}{v_{rms, SO_2}} = \sqrt{\frac{T_{CH_4}}{M_{CH_4}} \cdot \frac{M_{SO_2}}{T_{SO_2}}} = 4. Substituting values (TSO2=300T_{SO_2} = 300 K): TCH41664300=4\sqrt{\frac{T_{CH_4}}{16} \cdot \frac{64}{300}} = 4. Solving for TCH4T_{CH_4}: TCH41664300=16    TCH4=1200\frac{T_{CH_4}}{16} \cdot \frac{64}{300} = 16 \implies T_{CH_4} = 1200 K. Average KE per mole of CH4CH_4: KEmole,CH4=32RTCH4KE_{mole, CH_4} = \frac{3}{2}RT_{CH_4}. Using R2R \approx 2 cal/mol·K, KEmole,CH4=32×2×1200=3600KE_{mole, CH_4} = \frac{3}{2} \times 2 \times 1200 = 3600 cal.