Solveeit Logo

Question

Question: Mole fraction of ethanol and water mixture is 0.25. Hence, percentage concentration of ethanol by we...

Mole fraction of ethanol and water mixture is 0.25. Hence, percentage concentration of ethanol by weight of mixture is:
A. 25%
B. 75%
C. 46%
D. 54%

Explanation

Solution

Hint: Mole fraction of ethanol (C2H6O{C_2}{H_6}O) and water (H2O{H_2}O), is determined by knowing the weight of 0.25 ethanol and total weight of the ethanol.

Step by step answer:
We know, the molecular formula of ethanol of C2H6O{C_2}{H_6}O
Molar weight = Sum of the atomic masses of the constituent elements.
Atomic mass of C is 12g/mole12g/mole
Atomic mass of H is 1g/mole1g/mole
Atomic mass of O is 16g/mole16g/mole
Molar weight of Ethanol is = 2×12+6×1+16 =46 g/mole= {\text{ }}2 \times 12 + 6 \times 1 + 16{\text{ }} = 46{\text{ }}g/mole
So 0.25 mole of Ethanol have weight of 0.25×46 = 11.6 g0.25 \times 46{\text{ }} = {\text{ }}11.6{\text{ }}g
Similarly,
Molar weight of H2O{H_2}O is 2×1 + 16 = 18 g/mole2 \times 1{\text{ }} + {\text{ }}16{\text{ }} = {\text{ }}18{\text{ }}g/mole
So 0.75 mole of water have weight of 0.75×18 = 13.5 g0.75 \times 18{\text{ }} = {\text{ }}13.5{\text{ }}g
Therefore, the total weight of ethanol is 11.6 g + 13.5 g = 25.1 g11.6{\text{ }}g{\text{ }} + {\text{ }}13.5{\text{ }}g{\text{ }} = {\text{ }}25.1{\text{ }}g
Now, the percentage concentration of ethanol is
(11.625.1)×100 = 46.21%\left( {\dfrac{{11.6}}{{25.1}}} \right) \times 100{\text{ }} = {\text{ }}46.21\%
46%\approx 46\%

So we can see that Option C is the correct answer.

NOTE: Pure Ethanol is flammable, colourless liquid with a boiling point of 78.5C78.5^\circ C. It has a low melting point of 144.5C- 144.5^\circ C. This property of ethanol allows it to be used as antifreeze products.
If we have a mixture of N components and let us take moles of each component as
n1,n2,n3,  nN{{\text{n}}_{\text{1}}}{\text{,}}{{\text{n}}_{\text{2}}}{\text{,}}{{\text{n}}_{\text{3}}}{\text{, \ }}{{\text{n}}_{\text{N}}}
Also, let us take the molar masses of each component as
M1,M2,M3,  MN{{\text{M}}_{\text{1}}}{\text{,}}{{\text{M}}_{\text{2}}}{\text{,}}{{\text{M}}_{\text{3}}}{\text{, \ }}{{\text{M}}_{\text{N}}}
Therefore, the mole fraction of any component is:
xi = nii = 1Nni{{\text{x}}_{\text{i}}}{\text{ = }}\dfrac{{{{\text{n}}_{\text{i}}}}}{{\sum\limits_{{\text{i = 1}}}^{\text{N}} {{{\text{n}}_{\text{i}}}} }}
Therefore, the corresponding mass fraction can be written as:
yi = niMii = 1NniMi{{\text{y}}_{\text{i}}}{\text{ = }}\dfrac{{{{\text{n}}_{\text{i}}}{{\text{M}}_{\text{i}}}}}{{\sum\limits_{{\text{i = 1}}}^{\text{N}} {{{\text{n}}_{\text{i}}}} {{\text{M}}_{\text{i}}}}}
Hence, the corresponding mass percent can be simply written as (100 × yi)\left( {{\text{100 }} \times {\text{ }}{{\text{y}}_{\text{i}}}} \right)