Solveeit Logo

Question

Chemistry Question on Expressing Concentration of Solutions

Molarity equation of a mixture of solutions of same substance is given by

A

M1+V1×M2+V2×M3+V3+...=M1+M2+M3M_{1}+V_{1}\times M_{2}+V_{2}\times M_{3}+V_{3}+...= M_{1}+M_{2}+M_{3}

B

M1V1+M2V2+M3V3+...=M(V1+V2+V3)M_{1}V_{1}+M_{2}V_{2}+M_{3}V_{3}+...=M\left(V_{1}+V_{2}+V_{3}\right)

C

M1V1+M2V2+M3V3+...=M(1V1+1V2+1V3)\frac{M_{1}}{V_{1}}+\frac{M_{2}}{V_{2}}+\frac{M_{3}}{V_{3}}+ ... = M\left(\frac{1}{V_{1}}+\frac{1}{V_{2}}+\frac{1}{V_{3}}\right)

D

M1V1×M2V2×M3V3+...=M(1V1×1V2×1V3)\frac{M_{1}}{V_{1}}\times\frac{M_{2}}{V_{2}}\times\frac{M_{3}}{V_{3}}+ ... = M\left(\frac{1}{V_{1}}\times\frac{1}{V_{2}}\times\frac{1}{V_{3}}\right)

Answer

M1V1+M2V2+M3V3+...=M(V1+V2+V3)M_{1}V_{1}+M_{2}V_{2}+M_{3}V_{3}+...=M\left(V_{1}+V_{2}+V_{3}\right)

Explanation

Solution

Molarity, M=M = number of moles/volume of solution M=nVM=\frac{n}{V} for mixture of solutios n1+n2+n3+=M1V1+M2V2+M3V3+n _{1}+ n _{2}+ n _{3}+\ldots= M _{1} V _{1}+ M _{2} V _{2}+ M _{3} V _{3}+\ldots (n1+n2+n3+)×(V1+V2+V3+)(V1+V2+V3+)=M1V1+M2V2+M3V3+\left( n _{1}+ n _{2}+ n _{3}+\ldots\right) \times \frac{\left( V _{1}+ V _{2}+ V _{3}+\ldots\right)}{\left( V _{1}+ V _{2}+ V _{3}+\ldots\right)}= M _{1} V _{1}+ M _{2} V _{2}+ M _{3} V _{3}+\ldots total number of moles in the mixture =nT=n_{ T }, total volume =VT=V_{ T } final molarity =MT=M= M _{ T }= M nTVT×(V1+V2+V3+)=M1V1+M2V2+M3V3+\frac{ n _{ T }}{ V _{ T }} \times\left( V _{1}+ V _{2}+ V _{3}+\ldots\right)= M _{1} V _{1}+ M _{2} V _{2}+ M _{3} V _{3}+\ldots MT×(V1+V2+V3+)=M1V1+M2V2+M3V3+M _{ T } \times\left( V _{1}+ V _{2}+ V _{3}+\ldots\right)= M _{1} V _{1}+ M _{2} V _{2}+ M _{3} V _{3}+\ldots or M×(V1+V2+V3+)=M1V1+M2V2+M3V3+M \times\left( V _{1}+ V _{2}+ V _{3}+\ldots\right)= M _{1} V _{1}+ M _{2} V _{2}+ M _{3} V _{3}+\ldots