Solveeit Logo

Question

Question: Molar conductances of \[{\text{BaC}}{{\text{l}}_2}{\text{, }}{{\text{H}}_2}{\text{S}}{{\text{O}}_4}\...

Molar conductances of BaCl2H2SO4{\text{BaC}}{{\text{l}}_2}{\text{, }}{{\text{H}}_2}{\text{S}}{{\text{O}}_4} and HCl{\text{HCl}} at infinite dilution are X1X2{{\text{X}}_1}{\text{, }}{{\text{X}}_2} and X3{{\text{X}}_3} respectively. Molar conductance of BaSO4{\text{BaS}}{{\text{O}}_4} at infinite dilution is:
A) X1 + X2X3{{\text{X}}_1}{\text{ + }}{{\text{X}}_2} - {{\text{X}}_3}
B) X1 + X22X3{{\text{X}}_1}{\text{ + }}{{\text{X}}_2} - 2{{\text{X}}_3}
C) (X1 + X2X32\dfrac{{{{\text{X}}_1}{\text{ + }}{{\text{X}}_2} - {{\text{X}}_3}}}{2}
D) X1 + X22X32\dfrac{{{{\text{X}}_1}{\text{ + }}{{\text{X}}_2} - 2{{\text{X}}_3}}}{2}

Explanation

Solution

According to the Kohlrausch’s law of independent migration of ions, the equivalent conductivity of an electrolyte at infinite dilution is equal to the sum of the conductances of the anions and cations. In other words, “We can represent the limiting molar conductivity of an electrolyte as the sum of the individual contributions of the cations and anions present in the electrolyte”.

Complete step-by-step solution:
Molar conductances of BaCl2H2SO4{\text{BaC}}{{\text{l}}_2}{\text{, }}{{\text{H}}_2}{\text{S}}{{\text{O}}_4} and HCl{\text{HCl}} at infinite dilution are X1X2{{\text{X}}_1}{\text{, }}{{\text{X}}_2} and X3{{\text{X}}_3} respectively.
λmBaCl2=λBa2+o+2λClo=X1\lambda _m^\infty {\text{BaC}}{{\text{l}}_2} = \lambda _{{\text{B}}{{\text{a}}^{2 + }}}^o + 2\lambda _{{\text{C}}{{\text{l}}^ - }}^o = {X_1} … …(1)
λmH2SO4=2λH+o+λSO42o=X2\lambda _m^\infty {{\text{H}}_2}{\text{S}}{{\text{O}}_4} = 2\lambda _{{{\text{H}}^ + }}^o + \lambda _{{\text{SO}}_4^{2 - }}^o = {X_2} .. ….(2)
λmHCl=λH+o+λClo=X3\lambda _m^\infty {\text{HCl}} = \lambda _{{{\text{H}}^ + }}^o + \lambda _{{\text{C}}{{\text{l}}^ - }}^o = {X_3} … …(3)
λmBaSO4=λBa2+o+λSO42o\lambda _m^\infty {\text{BaS}}{{\text{O}}_4} = \lambda _{{\text{B}}{{\text{a}}^{2 + }}}^o + \lambda _{{\text{SO}}_4^{2 - }}^o … …(4)
Add equations (1) and (2)
λmBaCl2+λmH2SO4=λBa2+o+2λClo+2λH+o+λSO42o=X1+X2\lambda _m^\infty {\text{BaC}}{{\text{l}}_2} + \lambda _m^\infty {{\text{H}}_2}{\text{S}}{{\text{O}}_4} = \lambda _{{\text{B}}{{\text{a}}^{2 + }}}^o + 2\lambda _{{\text{C}}{{\text{l}}^ - }}^o + 2\lambda _{{{\text{H}}^ + }}^o + \lambda _{{\text{SO}}_4^{2 - }}^o = {X_1} + {X_2} … …(5)
Multiply equation (3) with 2.
2λmHCl=2λH+o+2λClo=2X32\lambda _m^\infty {\text{HCl}} = 2\lambda _{{{\text{H}}^ + }}^o + 2\lambda _{{\text{C}}{{\text{l}}^ - }}^o = 2{X_3} … …(6)
Subtract equation (6) from equation (5)
λmBaCl2+λmH2SO42λmHCl=λBa2+o+2λClo+2λH+o+λSO42o2λH+o2λClo=X1+X22X3\lambda _m^\infty {\text{BaC}}{{\text{l}}_2} + \lambda _m^\infty {{\text{H}}_2}{\text{S}}{{\text{O}}_4} - 2\lambda _m^\infty {\text{HCl}} = \lambda _{{\text{B}}{{\text{a}}^{2 + }}}^o + 2\lambda _{{\text{C}}{{\text{l}}^ - }}^o + 2\lambda _{{{\text{H}}^ + }}^o + \lambda _{{\text{SO}}_4^{2 - }}^o - 2\lambda _{{{\text{H}}^ + }}^o - 2\lambda _{{\text{C}}{{\text{l}}^ - }}^o = {X_1} + {X_2} - 2{X_3}
λmBaCl2+λmH2SO42λmHCl=λBa2+o+λSO42o=X1+X22X3\lambda _m^\infty {\text{BaC}}{{\text{l}}_2} + \lambda _m^\infty {{\text{H}}_2}{\text{S}}{{\text{O}}_4} - 2\lambda _m^\infty {\text{HCl}} = \lambda _{{\text{B}}{{\text{a}}^{2 + }}}^o + \lambda _{{\text{SO}}_4^{2 - }}^o = {X_1} + {X_2} - 2{X_3} … …(7)
The equation (7) and the equation (4) are one and the same
Hence, molar conductance of BaSO4{\text{BaS}}{{\text{O}}_4} at infinite dilution is X1 + X22X3{{\text{X}}_1}{\text{ + }}{{\text{X}}_2} - 2{{\text{X}}_3} .

Hence, the correct answer is option (B).

Note: We can call the molar conductivity as the conductance of the given volume of electrolyte having one mole of electrolyte. The solution is kept between two electrodes. The electrodes have unit area of cross-section and distance of unit length. We can call the molar conductive as limiting molar conductivity if the concentration of the electrolyte is nearly zero.