Solveeit Logo

Question

Question: Molality: It is defined as the number of moles of the solute present in 1 kg of the solvent. It is d...

Molality: It is defined as the number of moles of the solute present in 1 kg of the solvent. It is denoted by m
molality(m)=Number of moles of soluteNumber of kilograms of the solventmolality(m)=\dfrac{Number\ \text{of}\ \text{moles}\ \text{of}\ \text{solute}}{Number\ \text{of}\ \text{kilograms}\ \text{of}\ \text{the}\ \text{solvent}}
Let wA{{w}_{A}} grams of the solute of molecular mass mA{{m}_{A}} be present in wB{{w}_{B}} grams of the solvent, then
molality(m)=wAmA×wB×1000molality(m)=\dfrac{{{w}_{A}}}{{{m}_{A}}\times {{w}_{B}}}\times 1000
Relation between mole fraction and molality:
XA=nn+N{{X}_{A}}=\dfrac{n}{n+N}and XB=nn+N{{X}_{B}}=\dfrac{n}{n+N}
XAXB=nN=Moles of soluteMoles of solvent=wA×mBwB×mA\dfrac{{{X}_{A}}}{{{X}_{B}}}=\dfrac{n}{N}=\dfrac{Moles\ \text{of}\ \text{solute}}{Moles\ \text{of}\ \text{solvent}}=\dfrac{{{w}_{A}}\times {{m}_{B}}}{{{w}_{B}}\times {{m}_{A}}}
XA×1000XB×1000=wA×1000wB×1000=m\dfrac{{{X}_{A}}\times 1000}{{{X}_{B}}\times 1000}=\dfrac{{{w}_{A}}\times 1000}{{{w}_{B}}\times 1000}=mor XA×1000(1XA)mB=m\dfrac{{{X}_{A}}\times 1000}{(1-{{X}_{A}}){{m}_{B}}}=m
If the ratio of the mole fraction of a solute is changed from 13\dfrac{1}{3}to 12\dfrac{1}{2}in the 800g of solvent then, the ratio of molality will be:
A. 1:3
B. 3:1
C. 4:3
D. 1:2

Explanation

Solution

Molality is also known by the name molal concentration. It generally measures the solute concentration in a solution. The solution is composed of two components called solute and solvent. There are many different ways to express the concentration of solutions like molarity, molality, normality, formality, volume percentage, weight percentage and part per million. Mole fraction represents the number of molecules of a particular component in a mixture divided by the total number of moles in the given mixture. This is a general way of expressing the concentration of a solution.

Complete Step by step solution: The molar fraction can be represented by X. If the solution consists of components A and B then the mole fraction is given by the
Mole fraction of solute, XA=Moles of soluteMoles of solute+Moles of solvent=nN+nMole\ \text{fraction}\ \text{of}\ \text{solute, }{{\text{X}}_{\text{A}}}\text{=}\dfrac{Moles\ \text{of}\ \text{solute}}{Moles\ \text{of}\ \text{solute+Moles}\ \text{of}\ \text{solvent}}=\dfrac{n}{N+n}
And mole fraction of solvent is given by
Mole fraction of solvent, XB=Moles of soluteMoles of solute+Moles of solvent=NN+nMole\ \text{fraction}\ \text{of}\ \text{solvent, }{{\text{X}}_{\text{B}}}\text{=}\dfrac{Moles\ \text{of}\ \text{solute}}{Moles\ \text{of}\ \text{solute+Moles}\ \text{of}\ \text{solvent}}=\dfrac{N}{N+n}
XAXB=nN=Moles of soluteMoles of solvent=wA×mBwB×mA\dfrac{{{X}_{A}}}{{{X}_{B}}}=\dfrac{n}{N}=\dfrac{Moles\ \text{of}\ \text{solute}}{Moles\ \text{of}\ \text{solvent}}=\dfrac{{{w}_{A}}\times {{m}_{B}}}{{{w}_{B}}\times {{m}_{A}}}
XA×1000XB×1000=wA×1000wB×1000=m\dfrac{{{X}_{A}}\times 1000}{{{X}_{B}}\times 1000}=\dfrac{{{w}_{A}}\times 1000}{{{w}_{B}}\times 1000}=m
XA×1000XB×mB=wAwB×1000mA=molality\dfrac{{{X}_{A}}\times 1000}{{{X}_{B}}\times {{m}_{B}}}=\dfrac{{{w}_{A}}}{{{w}_{B}}}\times \dfrac{1000}{{{m}_{A}}}=molality
Or XA×1000(1XA)=m\dfrac{{{X}_{A}}\times 1000}{(1-{{X}_{A}})}=m
Initially XA=13{{X}_{A}}=\dfrac{1}{3}
Therefore, m1=13×1000113=10002=500{{m}_{1}}=\dfrac{\dfrac{1}{3}\times 1000}{1-\dfrac{1}{3}}=\dfrac{1000}{2}=500
When XA=12{{X}_{A}}=\dfrac{1}{2}
Then m2=12×1000112=1000{{m}_{2}}=\dfrac{\dfrac{1}{2}\times 1000}{1-\dfrac{1}{2}}=1000
Therefore, m1m2=5001000=12\dfrac{{{m}_{1}}}{{{m}_{2}}}=\dfrac{500}{1000}=\dfrac{1}{2}= 1:2

Hence option D is the correct answer.

Note: It is an important point to note that mole fraction represents a fraction of molecules so we can say that different molecules have different masses therefore the mole fraction is also different in their cases it is also a different term from the mass fraction.