Solveeit Logo

Question

Question: Minimum value of sinx+ cosx...

Minimum value of sinx+ cosx

A

√2

B

-√2

C

1

D

-1

Answer

-√2

Explanation

Solution

To find the minimum value of sinx+cosx\sin x + \cos x, we can use the amplitude-phase form for the sum of sine and cosine functions.

Any expression of the form asinx+bcosxa \sin x + b \cos x can be rewritten as Rsin(x+α)R \sin(x + \alpha), where R=a2+b2R = \sqrt{a^2 + b^2}.

In this case, a=1a=1 and b=1b=1. So, R=12+12=1+1=2R = \sqrt{1^2 + 1^2} = \sqrt{1 + 1} = \sqrt{2}.

Thus, sinx+cosx=2(12sinx+12cosx)\sin x + \cos x = \sqrt{2} \left( \frac{1}{\sqrt{2}} \sin x + \frac{1}{\sqrt{2}} \cos x \right). We know that cos(π4)=12\cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} and sin(π4)=12\sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}. So, sinx+cosx=2(sinxcos(π4)+cosxsin(π4))\sin x + \cos x = \sqrt{2} \left( \sin x \cos\left(\frac{\pi}{4}\right) + \cos x \sin\left(\frac{\pi}{4}\right) \right).

Using the trigonometric identity sin(A+B)=sinAcosB+cosAsinB\sin(A+B) = \sin A \cos B + \cos A \sin B, we get: sinx+cosx=2sin(x+π4)\sin x + \cos x = \sqrt{2} \sin\left(x + \frac{\pi}{4}\right).

The range of the sine function, sin(θ)\sin(\theta), for any real θ\theta is [1,1][-1, 1]. Therefore, the minimum value of sin(x+π4)\sin\left(x + \frac{\pi}{4}\right) is 1-1.

Substituting this minimum value back into the expression: Minimum value of sinx+cosx=2×(1)=2\sin x + \cos x = \sqrt{2} \times (-1) = -\sqrt{2}.

The minimum value of sinx+cosx\sin x + \cos x is 2-\sqrt{2}.