Question
Question: Minimum value of sinx+ cosx...
Minimum value of sinx+ cosx

√2
-√2
1
-1
-√2
Solution
To find the minimum value of sinx+cosx, we can use the amplitude-phase form for the sum of sine and cosine functions.
Any expression of the form asinx+bcosx can be rewritten as Rsin(x+α), where R=a2+b2.
In this case, a=1 and b=1. So, R=12+12=1+1=2.
Thus, sinx+cosx=2(21sinx+21cosx). We know that cos(4π)=21 and sin(4π)=21. So, sinx+cosx=2(sinxcos(4π)+cosxsin(4π)).
Using the trigonometric identity sin(A+B)=sinAcosB+cosAsinB, we get: sinx+cosx=2sin(x+4π).
The range of the sine function, sin(θ), for any real θ is [−1,1]. Therefore, the minimum value of sin(x+4π) is −1.
Substituting this minimum value back into the expression: Minimum value of sinx+cosx=2×(−1)=−2.
The minimum value of sinx+cosx is −2.