Solveeit Logo

Question

Question: Minimum value of \(5\sin^{2}\theta + 4\cos^{2}\theta\)is...

Minimum value of 5sin2θ+4cos2θ5\sin^{2}\theta + 4\cos^{2}\thetais

A

1

B

2

C

3

D

4

Answer

4

Explanation

Solution

Let f(θ)=5sin2θ+4cos2θ=4+sin2θf(\theta) = 5\sin^{2}\theta + 4\cos^{2}\theta = 4 + \sin^{2}\theta

f(θ)4+0\therefore f(\theta) \geq 4 + 0 (sin2θ0)(\because\sin^{2}\theta \geq 0)

\therefore The minimum value of f(θ)f(\theta) is 4.