Solveeit Logo

Question

Question: Minimum amount of \(A{{g}_{2}}C{{O}_{3}}\left( s \right)\) required to produce sufficient amount of ...

Minimum amount of Ag2CO3(s)A{{g}_{2}}C{{O}_{3}}\left( s \right) required to produce sufficient amount of oxygen for the complete combustion of C2H2{{C}_{2}}{{H}_{2}} which produces 11.2 L of CO2C{{O}_{2}} at STP after combustion is⋯⋯
Ag2CO3(s)2Ag(s)+CO2(g)+12O2(g)A{{g}_{2}}C{{O}_{3}}\left( s \right)\to 2Ag\left( s \right)+C{{O}_{2}}\left( g \right)+\dfrac{1}{2}{{O}_{2}}\left( g \right)
C2H2+52O22CO2+H2O{{C}_{2}}{{H}_{2}}+\dfrac{5}{2}{{O}_{2}}\to 2C{{O}_{2}}+{{H}_{2}}O
(A) 276 g
(B) 345 g
(C) 690 g
(D) 1380 g

Explanation

Solution

When silver carbonate is subjected to heating, it decomposes into elemental silver along with a liberating mixture of carbon dioxide and oxygen gas. This oxygen formed is used for the combustion of acetylene to form carbon dioxide and water.

Complete step by step solution:
- The idea of moles can be defined in terms of volume. That is at STP (standard pressure and temperature ) conditions, one mole of any gas ( particles) will occupy a volume of 22.4 litres. Therefore the number of moles in 11.2 L of CO2C{{O}_{2}} at STP can be found as given below
11.2 L of CO2  at STP=11.2L22.4L/mol  =0.5mol11.2\text{ }L\text{ }of\text{ }C{{O}_{2}}~~at\text{ }STP=\dfrac{11.2L}{22.4{L}/{mol}\;}=0.5mol
From the stoichiometry of the reaction which involves the combustion of acetylene, we can see that 52\dfrac{5}{2} moles of O2{{O}_{2}} is required for the combustion of C2H2{{C}_{2}}{{H}_{2}} along with 2 moles of CO2C{{O}_{2}}.
Therefore we can write as follows
1 mole of CO2=52×2moles of O2 required 1\text{ }mole\text{ }of\text{ }C{{O}_{2}}=\dfrac{5}{2\times 2}moles\text{ }of\text{ }{{O}_{2}}\text{ }required\text{ }
Thus 52×2\dfrac{5}{2\times 2} moles of O2{{O}_{2}} is required for the complete combustion of C2H2{{C}_{2}}{{H}_{2}}. The number of moles of O2{{O}_{2}} required for 0.5 mol of CO2C{{O}_{2}} can be found as below
0.5mole of CO2=0.5 mol×52×2=58moles of O2 required \text{0}\text{.5}mole\text{ }of\text{ }C{{O}_{2}}=0.5\text{ mol}\times \dfrac{5}{2\times 2}=\dfrac{5}{8}moles\text{ }of\text{ }{{O}_{2}}\text{ }required\text{ }
That is 58\dfrac{5}{8} moles of O2{{O}_{2}} required for the complete combustion of C2H2{{C}_{2}}{{H}_{2}}.Now let's look at the reaction which involves the decomposition of silver carbonate (Ag2CO3(s)A{{g}_{2}}C{{O}_{3}}\left( s \right)).By looking at the stoichiometry of the reaction , we can arrive at the following conclusion
12moles of O2=1 mole of Ag2CO3 required\dfrac{1}{2}moles\text{ }of\text{ }{{O}_{2}}=1\text{ mole }of\text{ }A{{g}_{2}}C{{O}_{3}}\text{ }required
1 moles of O2=2 mole of Ag2CO3 required1\text{ }moles\text{ }of\text{ }{{O}_{2}}=2\text{ mole }of\text{ }A{{g}_{2}}C{{O}_{3}}\text{ }required
As we mentioned 58\dfrac{5}{8} moles of O2{{O}_{2}} is required for the complete combustion of C2H2{{C}_{2}}{{H}_{2}}.Therefore we can write as follows
58 moles of O2=2×58=54 moles of Ag2CO3(s) required\dfrac{5}{8}\text{ }moles\text{ }of\text{ }{{O}_{2}}=2\times \dfrac{5}{8}=\dfrac{5}{4}\text{ }moles\text{ }of\text{ }A{{g}_{2}}C{{O}_{3}}\left( s \right)\text{ }required
The molar mass of silver carbonate is 275.5 gmol1gmo{{l}^{-1}} and thus the mass of Ag2CO3(s)A{{g}_{2}}C{{O}_{3}}\left( s \right) required can be given as follows
The mass of Ag2CO3(s) required=275.5g/mol  ×54mol=345gThe\text{ }mass\text{ }of\text{ }A{{g}_{2}}C{{O}_{3}}\left( s \right)\text{ }required=275.5{g}/{mol}\;\times \dfrac{5}{4}mol=345g

Therefore the answer is option (B) 345 g

Note: It should be noted that acetylene(C2H2{{C}_{2}}{{H}_{2}}) is a very widely used hydrocarbon and it is the simplest alkyne found in nature. Also, around 20% of C2H2{{C}_{2}}{{H}_{2}} is supplied by the industrial gases industry for oxyacetylene gas.