Solveeit Logo

Question

Question: Minimize \(z = \sum_{j = 1}^{n}{\sum_{i = 1}^{m}{c_{ij}x_{ij}}}\) Subject to :\(\sum_{j = 1}^{n}x_{...

Minimize z=j=1ni=1mcijxijz = \sum_{j = 1}^{n}{\sum_{i = 1}^{m}{c_{ij}x_{ij}}}

Subject to :j=1nxijai,i=1........,m\sum_{j = 1}^{n}x_{ij} \leq a_{i},i = 1........,m;i=1mxij=bj,j=1......,n\sum_{i = 1}^{m}{x_{ij} = b_{j},j = 1......,n} is a LPP with number of constraints

A

m+nm + n

B

mnm - n

C

mnmn

D

mn\frac{m}{n}

Answer

m+nm + n

Explanation

Solution

(I) Condition, i=1,x11+x12+x13+...........+x1na1i = 1,x_{11} + x_{12} + x_{13} + ........... + x_{1n} \leq a_{1}

i=2,x21+x22+x23+...........+x2na2i = 2,x_{21} + x_{22} + x_{23} + ........... + x_{2n} \leq a_{2} i=3,x31+x32+x33+............+x3na3i = 3,x_{31} + x_{32} + x_{33} + ............ + x_{3n} \leq a_{3}.........................

i=m,xm1+xm2+xm3+...........+xmnammconstraintsi = m,x_{m1} + x_{m2} + x_{m3} + ........... + x_{mn} \leq a_{m} \rightarrow m\text{constraints} (II) Condition j=1,x11+x21+x31+..........+xm1=b1j = 1,x_{11} + x_{21} + x_{31} + .......... + x_{m1} = b_{1}

j=2,x12+x22+x32+...........+xm2=b2j = 2,x_{12} + x_{22} + x_{32} + ........... + x_{m2} = b_{2}........................

j=n,x1n+x2n+x3n+..............+xmn=bnnj = n,x_{1n} + x_{2n} + x_{3n} + .............. + x_{mn} = b_{n} \rightarrow nconstraints

∴ Total constraints =m+n= m + n.