Question
Question: Minimize \(z = \sum_{j = 1}^{n}{\sum_{i = 1}^{m}{c_{ij}x_{ij}}}\) Subject to :\(\sum_{j = 1}^{n}x_{...
Minimize z=∑j=1n∑i=1mcijxij
Subject to :∑j=1nxij≤ai,i=1........,m;∑i=1mxij=bj,j=1......,n is a LPP with number of constraints
A
m+n
B
m−n
C
mn
D
nm
Answer
m+n
Explanation
Solution
(I) Condition, i=1,x11+x12+x13+...........+x1n≤a1
i=2,x21+x22+x23+...........+x2n≤a2 i=3,x31+x32+x33+............+x3n≤a3.........................
i=m,xm1+xm2+xm3+...........+xmn≤am→mconstraints (II) Condition j=1,x11+x21+x31+..........+xm1=b1
j=2,x12+x22+x32+...........+xm2=b2........................
j=n,x1n+x2n+x3n+..............+xmn=bn→nconstraints
∴ Total constraints =m+n.