Solveeit Logo

Question

Mathematics Question on Linear Programming Problem and its Mathematical Formulation

Minimise Z=j=1ni=1mcijxijZ=\displaystyle\sum_{j=1}^{n} \displaystyle\sum_{i=1}^{m} c_{i j} \cdot x_{i j} Subject to i=1mxij=bj,j=1,2,n\displaystyle\sum_{ i =1}^{ m } x _{ ij }= b _{ j }, j =1,2, \ldots \ldots n j=1nxij=bj,j=1,2,,m\displaystyle\sum_{j=1}^{n} x_{i j}=b_{j}, j=1,2, \ldots \ldots, m is a LPP with number of constraints

A

mnm - n

B

mnmn

C

m+nm + n

D

mn\frac{m}{n}

Answer

m+nm + n

Explanation

Solution

Constraints will be
x11+x21+...+xm1=b1x_{11}+x_{21}+...+x_{m 1}=b_{1}
x12+x22+...+xm2=b2x_{12}+x_{22}+...+x_{m 2}=b_{2}
x1n+x2n+...+xmn=bnx_{1 n}+x_{2 n}+...+x_{m n}=b_{n}
x11+x12+...+xln=b1x_{11}+x_{12}+...+x_{\ln }=b_{1}
x21+x22+...+x2n=b2x_{21}+x_{22}+...+x_{2 n}=b_{2}
xm1+xm2+...+xmn=bnx_{m 1}+x_{m 2}+...+x_{m n}=b_{n}
So the total number of constraints =m+n= m + n