Solveeit Logo

Question

Question: If the vectors $\vec{a} = \hat{i}-2\hat{j}+\hat{k}$, $\vec{b}=2\hat{i}-5\hat{j} + p\hat{k}$ and $\ve...

If the vectors a=i^2j^+k^\vec{a} = \hat{i}-2\hat{j}+\hat{k}, b=2i^5j^+pk^\vec{b}=2\hat{i}-5\hat{j} + p\hat{k} and c=5i^9j^+4k^\vec{c} = 5\hat{i}-9\hat{j}+ 4\hat{k} are coplanar, then the value of p is

A

-1/3

B

3

C

-3

D

1/3

Answer

3

Explanation

Solution

For three vectors to be coplanar, their scalar triple product must be zero. That is, a(b×c)=0\vec{a} \cdot (\vec{b} \times \vec{c}) = 0.

Given: a=(1,2,1)\vec{a} = (1, -2, 1) b=(2,5,p)\vec{b} = (2, -5, p) c=(5,9,4)\vec{c} = (5, -9, 4)

First, compute b×c\vec{b} \times \vec{c}:

b×c=i^j^k^25p594=i^((5)(4)(p)(9))j^(24p5)+k^(2(9)(5)(5))\vec{b} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -5 & p \\ 5 & -9 & 4 \end{vmatrix} = \hat{i}\Big((-5)(4) - (p)(-9)\Big) - \hat{j}\Big(2\cdot4 - p\cdot5\Big) + \hat{k}\Big(2(-9) - (-5)(5)\Big) =i^(20+9p)j^(85p)+k^(18+25)= \hat{i}(-20+9p) - \hat{j}(8-5p) + \hat{k}(-18+25) =(9p20)i^+(5p8)j^+7k^= (9p-20)\hat{i} + (5p-8)\hat{j} + 7\hat{k}.

Next, compute the scalar triple product:

a(b×c)=1(9p20)+(2)(5p8)+17\vec{a} \cdot (\vec{b} \times \vec{c}) = 1\cdot(9p-20) + (-2)\cdot(5p-8) + 1\cdot7 =9p2010p+16+7=p+3= 9p - 20 - 10p + 16 + 7 = -p + 3.

Setting the scalar triple product to zero:

p+3=0    p=3-p + 3 = 0 \implies p = 3.

Therefore, the value of pp is 3.