Question
Question: If the vectors $\vec{a} = \hat{i}-2\hat{j}+\hat{k}$, $\vec{b}=2\hat{i}-5\hat{j} + p\hat{k}$ and $\ve...
If the vectors a=i^−2j^+k^, b=2i^−5j^+pk^ and c=5i^−9j^+4k^ are coplanar, then the value of p is

A
-1/3
B
3
C
-3
D
1/3
Answer
3
Explanation
Solution
For three vectors to be coplanar, their scalar triple product must be zero. That is, a⋅(b×c)=0.
Given: a=(1,−2,1) b=(2,−5,p) c=(5,−9,4)
First, compute b×c:
b×c=i^25j^−5−9k^p4=i^((−5)(4)−(p)(−9))−j^(2⋅4−p⋅5)+k^(2(−9)−(−5)(5)) =i^(−20+9p)−j^(8−5p)+k^(−18+25) =(9p−20)i^+(5p−8)j^+7k^.
Next, compute the scalar triple product:
a⋅(b×c)=1⋅(9p−20)+(−2)⋅(5p−8)+1⋅7 =9p−20−10p+16+7=−p+3.
Setting the scalar triple product to zero:
−p+3=0⟹p=3.
Therefore, the value of p is 3.