Solveeit Logo

Question

Question: The equation of a progressive wave is $y = 8 \sin \left[ \pi \left( \frac{t}{10} - \frac{x}{4} \rig...

The equation of a progressive wave is

y=8sin[π(t10x4)+π3]y = 8 \sin \left[ \pi \left( \frac{t}{10} - \frac{x}{4} \right) + \frac{\pi}{3} \right], where all quantities are in SI units. Then the wavelength of the wave is

A

8 m

B

4 m

C

2 m

D

10 m

Answer

8 m

Explanation

Solution

The given wave is

y=8sin[π(t10x4)+π3]y = 8\sin\left[\pi\left(\frac{t}{10} - \frac{x}{4}\right) + \frac{\pi}{3}\right]

Rewrite the argument as:

π10tπ4x+π3\frac{\pi}{10}t - \frac{\pi}{4}x + \frac{\pi}{3}

Comparing with the standard form

y=Asin(ωtkx+ϕ)y = A \sin(\omega t - k x + \phi)

we have:

k=π4k = \frac{\pi}{4}

The wavelength λ\lambda is given by:

λ=2πk=2ππ/4=8m\lambda = \frac{2\pi}{k} = \frac{2\pi}{\pi/4} = 8\, \text{m}