Solveeit Logo

Question

Question: metal oxide having formula \[{{\text{Z}}_{\text{2}}}{{\text{O}}_{\text{3}}}\] gives free metal and w...

metal oxide having formula Z2O3{{\text{Z}}_{\text{2}}}{{\text{O}}_{\text{3}}} gives free metal and water on reduction with hydrogen. 02 g0 \cdot 2{\text{ g}} of metal oxide can be completely reduced by 12 mg12{\text{ mg}} of hydrogen. The atomic weight of the metal is:
A. 12{\text{12}}
B. 13{\text{13}}
C. 26{\text{26}}
D. 78{\text{78}}

Explanation

Solution

The atomic weight of any element is the product of the equivalent weight of the metal and its valency. Thus, calculate the equivalent weight and valency of the metal. The equivalent weight can be calculated from the mass of metal oxide reduced by one gram of hydrogen. The valency can be calculated from the formula of the metal oxide.

Complete step by step answer:
Step 1: Write the balanced chemical equation as follows:
A metal oxide having formula Z2O3{{\text{Z}}_{\text{2}}}{{\text{O}}_{\text{3}}} gives free metal and water on reduction with hydrogen. Thus, the reaction is,
Z2O3+H2Z+H2O{{\text{Z}}_{\text{2}}}{{\text{O}}_{\text{3}}} + {{\text{H}}_2} \to {\text{Z}} + {{\text{H}}_2}{\text{O}}
Count the number of all the atoms on the reactant and product sides. Thus,
Z2O3+H2Z+H2O{{\text{Z}}_{\text{2}}}{{\text{O}}_{\text{3}}} + {{\text{H}}_2} \to {\text{Z}} + {{\text{H}}_2}{\text{O}}
 Z2 Z1{\text{ Z}} - 2{\text{ Z}} - 1
 O3 O1{\text{ O}} - 3{\text{ O}} - 1
 H2 H2{\text{ H}} - 2{\text{ H}} - 2
Change the coefficient of Z{\text{Z}} to 22 to balance the number of Z{\text{Z}} atoms. Thus,
Z2O3+H22Z+H2O{{\text{Z}}_{\text{2}}}{{\text{O}}_{\text{3}}} + {{\text{H}}_2} \to 2{\text{Z}} + {{\text{H}}_2}{\text{O}}
 Z2 Z2{\text{ Z}} - 2{\text{ Z}} - 2
 O3 O1{\text{ O}} - 3{\text{ O}} - 1
 H2 H2{\text{ H}} - 2{\text{ H}} - 2
Change the coefficient of H2O{{\text{H}}_2}{\text{O}} to 33 to balance the number of O{\text{O}} atoms. Thus,
Z2O3+H22Z+3H2O{{\text{Z}}_{\text{2}}}{{\text{O}}_{\text{3}}} + {{\text{H}}_2} \to 2{\text{Z}} + 3{{\text{H}}_2}{\text{O}}
 Z2 Z2{\text{ Z}} - 2{\text{ Z}} - 2
 O3 O3{\text{ O}} - 3{\text{ O}} - 3
 H2 H6{\text{ H}} - 2{\text{ H}} - 6
Change the coefficient of H2{{\text{H}}_2} to 33 to balance the number of H{\text{H}} atoms. Thus,
Z2O3+3H22Z+3H2O{{\text{Z}}_{\text{2}}}{{\text{O}}_{\text{3}}} + 3{{\text{H}}_2} \to 2{\text{Z}} + 3{{\text{H}}_2}{\text{O}}
 Z2 Z2{\text{ Z}} - 2{\text{ Z}} - 2
 O3 O3{\text{ O}} - 3{\text{ O}} - 3
 H6 H6{\text{ H}} - 6{\text{ H}} - 6
Thus, the balanced chemical equation is,
Z2O3+3H22Z+3H2O{{\text{Z}}_{\text{2}}}{{\text{O}}_{\text{3}}} + 3{{\text{H}}_2} \to 2{\text{Z}} + 3{{\text{H}}_2}{\text{O}}
Step 2: Convert the units of weight of hydrogen from mg{\text{mg}} to g{\text{g}} using the relation as follows:
1 mg=1×103 g1{\text{ mg}} = 1 \times {10^{ - 3}}{\text{ g}}
Thus,
Mass of hydrogen=12 ̸mg×1×103 g1 ̸mg{\text{Mass of hydrogen}} = 12{\text{ }}\not{{{\text{mg}}}} \times \dfrac{{1 \times {{10}^{ - 3}}{\text{ g}}}}{{1{\text{ }}\not{{{\text{mg}}}}}}
Mass of hydrogen=12×103 g{\text{Mass of hydrogen}} = 12 \times {10^{ - 3}}{\text{ g}}
Thus, the weight of hydrogen is 12×103 g12 \times {10^{ - 3}}{\text{ g}}.
Step 3: Calculate the weight of Z2O3{{\text{Z}}_{\text{2}}}{{\text{O}}_{\text{3}}} reduced by 1 g1{\text{ g}} of hydrogen as follows:
02 g0 \cdot 2{\text{ g}} of Z2O3{{\text{Z}}_{\text{2}}}{{\text{O}}_{\text{3}}} is reduced by 12×103 g12 \times {10^{ - 3}}{\text{ g}}. Thus, weight of Z2O3{{\text{Z}}_{\text{2}}}{{\text{O}}_{\text{3}}} reduced by 1 g1{\text{ g}} of hydrogen is,
Mass of Z2O3=1 ̸H2×02 g Z2O312×103 ̸H2{\text{Mass of }}{{\text{Z}}_{\text{2}}}{{\text{O}}_{\text{3}}} = 1{\text{ }}\not{{{\text{g }}{{\text{H}}_2}}} \times \dfrac{{0 \cdot 2{\text{ g }}{{\text{Z}}_{\text{2}}}{{\text{O}}_{\text{3}}}}}{{12 \times {{10}^{ - 3}}{\text{ }}\not{{{\text{g }}{{\text{H}}_2}}}}}
Mass of Z2O3=167 g{\text{Mass of }}{{\text{Z}}_{\text{2}}}{{\text{O}}_{\text{3}}} = 16 \cdot 7{\text{ g}}
Thus, the weight of Z2O3{{\text{Z}}_{\text{2}}}{{\text{O}}_{\text{3}}} reduced by 1 g1{\text{ g}} of hydrogen is 167 g16 \cdot 7{\text{ g}}.
Step 4: Calculate the equivalent weight of the metal as follows:
The equivalent weight of the metal oxide is the sum of the equivalent weights of the metal and oxygen. Thus,
Equivalent weight of Z2O3=Equivalent weight of Z+Equivalent weight of O{\text{Equivalent weight of }}{{\text{Z}}_2}{{\text{O}}_3} = {\text{Equivalent weight of Z}} + {\text{Equivalent weight of O}}
Rearrange the equation for the equivalent weight of the metal. Thus,
Equivalent weight of Z2O3=Equivalent weight of Z+Equivalent weight of O{\text{Equivalent weight of }}{{\text{Z}}_2}{{\text{O}}_3} = {\text{Equivalent weight of Z}} + {\text{Equivalent weight of O}}
Equivalent weight of Z=Equivalent weight of Z2O3Equivalent weight of O{\text{Equivalent weight of Z}} = {\text{Equivalent weight of }}{{\text{Z}}_2}{{\text{O}}_3} - {\text{Equivalent weight of O}}
Substitute 16716 \cdot 7 for the equivalent weight of Z2O3{{\text{Z}}_{\text{2}}}{{\text{O}}_{\text{3}}}, 88 for the equivalent weight of oxygen. Thus,
Equivalent weight of Z=1678{\text{Equivalent weight of Z}} = 16 \cdot 7 - {\text{8}}
Equivalent weight of Z=87{\text{Equivalent weight of Z}} = 8 \cdot 7
Thus, the equivalent weight of the metal is 878 \cdot 7.
Step 5: Calculate the atomic weight of the metal as follows:
The atomic weight of any element is the product of the equivalent weight of the metal and its valency. Thus,
Atomic weight of Z=Equivalent weight of Z×Valency of Z in Z2O3{\text{Atomic weight of Z}} = {\text{Equivalent weight of Z}} \times {\text{Valency of Z in }}{{\text{Z}}_2}{{\text{O}}_3}
The metal oxide is Z2O3{{\text{Z}}_{\text{2}}}{{\text{O}}_{\text{3}}}. The valency of the metal in Z2O3{{\text{Z}}_{\text{2}}}{{\text{O}}_{\text{3}}} is 33.
Substitute 878 \cdot 7 for the equivalent weight of Z{\text{Z}}, 33 for the valency of Z{\text{Z}}. Thus,
Atomic weight of Z=87×3{\text{Atomic weight of Z}} = 8 \cdot 7 \times 3
Atomic weight of Z=26{\text{Atomic weight of Z}} = 26
Thus, the atomic weight of the metal is 26{\text{26}}.

So, the correct answer is Option c.

Note:
The combining power of any metal with other atoms to form a chemical compound is known as the valency of the metal. Thus,
For Z2O3{{\text{Z}}_{\text{2}}}{{\text{O}}_{\text{3}}}, two atoms of Z{\text{Z}} combine with three atoms of O{\text{O}}. Thus, the valency of Z{\text{Z}} is three and that of O{\text{O}} is two.