Solveeit Logo

Question

Question: $\tan(\cos^{-1}(\frac{3}{\sqrt{10}})) + 2\sin^{-1}(\frac{4}{\sqrt{17}})$...

tan(cos1(310))+2sin1(417)\tan(\cos^{-1}(\frac{3}{\sqrt{10}})) + 2\sin^{-1}(\frac{4}{\sqrt{17}})

Answer

13+πtan1(815)\frac{1}{3} + \pi - \tan^{-1}(\frac{8}{15})

Explanation

Solution

To evaluate the expression tan(cos1(310))+2sin1(417)\tan(\cos^{-1}(\frac{3}{\sqrt{10}})) + 2\sin^{-1}(\frac{4}{\sqrt{17}}), we will evaluate each term separately.

Part 1: tan(cos1(310))\tan(\cos^{-1}(\frac{3}{\sqrt{10}}))

Let θ=cos1(310)\theta = \cos^{-1}(\frac{3}{\sqrt{10}}). This implies cosθ=310\cos \theta = \frac{3}{\sqrt{10}}. Since 310>0\frac{3}{\sqrt{10}} > 0, θ\theta lies in the first quadrant, i.e., 0<θ<π20 < \theta < \frac{\pi}{2}.

We can construct a right-angled triangle where the adjacent side is 3 and the hypotenuse is 10\sqrt{10}. Using the Pythagorean theorem, the opposite side yy is: y2+32=(10)2y^2 + 3^2 = (\sqrt{10})^2 y2+9=10y^2 + 9 = 10 y2=1y^2 = 1 y=1y = 1 (since length must be positive).

Now, we can find tanθ\tan \theta: tanθ=OppositeAdjacent=13\tan \theta = \frac{\text{Opposite}}{\text{Adjacent}} = \frac{1}{3}. So, tan(cos1(310))=13\tan(\cos^{-1}(\frac{3}{\sqrt{10}})) = \frac{1}{3}.

Part 2: 2sin1(417)2\sin^{-1}(\frac{4}{\sqrt{17}})

Let ϕ=sin1(417)\phi = \sin^{-1}(\frac{4}{\sqrt{17}}). This implies sinϕ=417\sin \phi = \frac{4}{\sqrt{17}}. Since 417>0\frac{4}{\sqrt{17}} > 0, ϕ\phi lies in the first quadrant, i.e., 0<ϕ<π20 < \phi < \frac{\pi}{2}.

We can construct a right-angled triangle where the opposite side is 4 and the hypotenuse is 17\sqrt{17}. Using the Pythagorean theorem, the adjacent side xx is: x2+42=(17)2x^2 + 4^2 = (\sqrt{17})^2 x2+16=17x^2 + 16 = 17 x2=1x^2 = 1 x=1x = 1 (since length must be positive).

Now, we can find tanϕ\tan \phi: tanϕ=OppositeAdjacent=41=4\tan \phi = \frac{\text{Opposite}}{\text{Adjacent}} = \frac{4}{1} = 4. So, ϕ=tan1(4)\phi = \tan^{-1}(4).

We need to evaluate 2ϕ=2tan1(4)2\phi = 2\tan^{-1}(4). We use the formula for 2tan1x2\tan^{-1}x: 2tan1x=tan1(2x1x2)2\tan^{-1}x = \tan^{-1}\left(\frac{2x}{1-x^2}\right) if 1<x<1-1 < x < 1. 2tan1x=π+tan1(2x1x2)2\tan^{-1}x = \pi + \tan^{-1}\left(\frac{2x}{1-x^2}\right) if x>1x > 1. 2tan1x=π+tan1(2x1x2)2\tan^{-1}x = -\pi + \tan^{-1}\left(\frac{2x}{1-x^2}\right) if x<1x < -1.

In our case, x=4x=4, which is greater than 1. So we use the second formula: 2tan1(4)=π+tan1(2×4142)2\tan^{-1}(4) = \pi + \tan^{-1}\left(\frac{2 \times 4}{1 - 4^2}\right) =π+tan1(8116)= \pi + \tan^{-1}\left(\frac{8}{1 - 16}\right) =π+tan1(815)= \pi + \tan^{-1}\left(\frac{8}{-15}\right) Since tan1(y)=tan1(y)\tan^{-1}(-y) = -\tan^{-1}(y): 2tan1(4)=πtan1(815)2\tan^{-1}(4) = \pi - \tan^{-1}\left(\frac{8}{15}\right).

Combining the parts:

The original expression is: tan(cos1(310))+2sin1(417)\tan(\cos^{-1}(\frac{3}{\sqrt{10}})) + 2\sin^{-1}(\frac{4}{\sqrt{17}}) =13+(πtan1(815))= \frac{1}{3} + \left(\pi - \tan^{-1}\left(\frac{8}{15}\right)\right) =13+πtan1(815)= \frac{1}{3} + \pi - \tan^{-1}\left(\frac{8}{15}\right)

This is the simplified form of the expression.