Question
Question: $\tan(\cos^{-1}(\frac{3}{\sqrt{10}})) + 2\sin^{-1}(\frac{4}{\sqrt{17}})$...
tan(cos−1(103))+2sin−1(174)

31+π−tan−1(158)
Solution
To evaluate the expression tan(cos−1(103))+2sin−1(174), we will evaluate each term separately.
Part 1: tan(cos−1(103))
Let θ=cos−1(103). This implies cosθ=103. Since 103>0, θ lies in the first quadrant, i.e., 0<θ<2π.
We can construct a right-angled triangle where the adjacent side is 3 and the hypotenuse is 10. Using the Pythagorean theorem, the opposite side y is: y2+32=(10)2 y2+9=10 y2=1 y=1 (since length must be positive).
Now, we can find tanθ: tanθ=AdjacentOpposite=31. So, tan(cos−1(103))=31.
Part 2: 2sin−1(174)
Let ϕ=sin−1(174). This implies sinϕ=174. Since 174>0, ϕ lies in the first quadrant, i.e., 0<ϕ<2π.
We can construct a right-angled triangle where the opposite side is 4 and the hypotenuse is 17. Using the Pythagorean theorem, the adjacent side x is: x2+42=(17)2 x2+16=17 x2=1 x=1 (since length must be positive).
Now, we can find tanϕ: tanϕ=AdjacentOpposite=14=4. So, ϕ=tan−1(4).
We need to evaluate 2ϕ=2tan−1(4). We use the formula for 2tan−1x: 2tan−1x=tan−1(1−x22x) if −1<x<1. 2tan−1x=π+tan−1(1−x22x) if x>1. 2tan−1x=−π+tan−1(1−x22x) if x<−1.
In our case, x=4, which is greater than 1. So we use the second formula: 2tan−1(4)=π+tan−1(1−422×4) =π+tan−1(1−168) =π+tan−1(−158) Since tan−1(−y)=−tan−1(y): 2tan−1(4)=π−tan−1(158).
Combining the parts:
The original expression is: tan(cos−1(103))+2sin−1(174) =31+(π−tan−1(158)) =31+π−tan−1(158)
This is the simplified form of the expression.