Solveeit Logo

Question

Question: \(\vec { A } = 2 \hat { i } + 4 \hat { j } + 4 \hat { k }\) and \(\vec { B } = 4 \hat { i } + 2 \ha...

A=2i^+4j^+4k^\vec { A } = 2 \hat { i } + 4 \hat { j } + 4 \hat { k } and B=4i^+2j^4k^\vec { B } = 4 \hat { i } + 2 \hat { j } - 4 \hat { k } are two vectors. The angle between them will be

A

00

B

450

C

600

D

900

Answer

900

Explanation

Solution

cosθ=ABAB=a1b1+a2b2+a3b3AB\cos \theta = \frac { \overrightarrow { \mathrm { A } } \cdot \vec { B } } { | \overrightarrow { \mathrm { A } } | \cdot | \vec { B } | } = \frac { a _ { 1 } b _ { 1 } + a _ { 2 } b _ { 2 } + a _ { 3 } b _ { 3 } } { | \overrightarrow { \mathrm { A } } | \cdot | \vec { B } | }

=2×4+4×24×4AB=0= \frac { 2 \times 4 + 4 \times 2 - 4 \times 4 } { | \vec { A } | \cdot | \vec { B } | } = 0

θ=cos1(0)\theta = \cos ^ { - 1 } \left( 0 ^ { \circ } \right) θ=90\Rightarrow \theta = 90 ^ { \circ }