Solveeit Logo

Question

Question: ![](https://cdn.pureessence.tech/canvas_463.png?top_left_x=999&top_left_y=900&width=300&height=59)...

A

Zero

B

A2B2A ^ { 2 } B ^ { 2 }

C

AB

D

AB\sqrt { \mathrm { AB } }

Answer

A2B2A ^ { 2 } B ^ { 2 }

Explanation

Solution

Letθ\thetabe angle between vector A\vec { A } and B\overrightarrow { \mathrm { B } }

A×B=ABsinθ\therefore | \overrightarrow { \mathrm { A } } \times \overrightarrow { \mathrm { B } } | = \mathrm { AB } \sin \thetaand

A×B2+AB2=(ABsinθ)2+(ABcosθ)2| \overrightarrow { \mathrm { A } } \times \overrightarrow { \mathrm { B } } | ^ { 2 } + | \overrightarrow { \mathrm { A } } \cdot \overrightarrow { \mathrm { B } } | ^ { 2 } = ( \mathrm { AB } \sin \theta ) ^ { 2 } + ( \mathrm { AB } \cos \theta ) ^ { 2 }

=A2 B2sin2θ+A2 B2cos2θ=A2 B2= \mathrm { A } ^ { 2 } \mathrm {~B} ^ { 2 } \sin ^ { 2 } \theta + \mathrm { A } ^ { 2 } \mathrm {~B} ^ { 2 } \cos ^ { 2 } \theta = \mathrm { A } ^ { 2 } \mathrm {~B} ^ { 2 }