Question
Question: \(\left[ \begin{array} { c c } 1 & - \tan \theta / 2 \\ \tan \theta / 2 & 1 \end{array} \right]\) \(...
[1tanθ/2−tanθ/21] $\begin{bmatrix} 1 & \tan\theta/2 \
- \tan\theta/2 & 1 \end{bmatrix}^{- 1}$ is equal to-
A
[sinθcosθ−cosθsinθ]
B
[cosθsinθ−sinθcosθ]
C
$\begin{bmatrix} \cos\theta & \sin\theta \
- \sin\theta & \cos\theta \end{bmatrix}$
D
None of these
Answer
[cosθsinθ−sinθcosθ]
Explanation
Solution
$\begin{bmatrix} 1 & \tan\theta/2 \
- \tan\theta/2 & 1 \end{bmatrix}^{- 1}=\frac{\begin{bmatrix} 1 & - \tan\theta/2 \ \tan\theta/2 & 1 \end{bmatrix}}{1 + \tan^{2}\theta/2}$
= [1tanθ/2−tanθ/21] 1+tan2θ/2[1tanθ/2−tanθ/21]
= [1+tan2θ/21−tan2θ/21+tan2θ/22tanθ/21+tan2θ/2−2tanθ/21+tan2θ/21−tan2θ/2]= [cosθsinθ−sinθcosθ]