Solveeit Logo

Question

Question: \(\tan ^ { - 1 } x + \cot ^ { - 1 } ( x + 1 ) =\)...

tan1x+cot1(x+1)=\tan ^ { - 1 } x + \cot ^ { - 1 } ( x + 1 ) =

A

tan1(x2+1)\tan ^ { - 1 } \left( x ^ { 2 } + 1 \right)

B

tan1(x2+x)\tan ^ { - 1 } \left( x ^ { 2 } + x \right)

C

tan1(x+1)\tan ^ { - 1 } ( x + 1 )

D

tan1(x2+x+1)\tan ^ { - 1 } \left( x ^ { 2 } + x + 1 \right)

Answer

tan1(x2+x+1)\tan ^ { - 1 } \left( x ^ { 2 } + x + 1 \right)

Explanation

Solution

tan1x+cot1(x+1)=tan1x+tan1(1x+1)\tan ^ { - 1 } x + \cot ^ { - 1 } ( x + 1 ) = \tan ^ { - 1 } x + \tan ^ { - 1 } \left( \frac { 1 } { x + 1 } \right)

=tan1[x+1x+11xx+1]=tan1(x2+x+1)= \tan ^ { - 1 } \left[ \frac { x + \frac { 1 } { x + 1 } } { 1 - \frac { x } { x + 1 } } \right] = \tan ^ { - 1 } \left( x ^ { 2 } + x + 1 \right) .