Solveeit Logo

Question

Question: \(\tan ^ { - 1 } \left[ \frac { \cos x } { 1 + \sin x } \right] =\)...

tan1[cosx1+sinx]=\tan ^ { - 1 } \left[ \frac { \cos x } { 1 + \sin x } \right] =

A

π4x2\frac { \pi } { 4 } - \frac { x } { 2 }

B

π4+x2\frac { \pi } { 4 } + \frac { x } { 2 }

C

x2\frac { x } { 2 }

D

π4x\frac { \pi } { 4 } - x

Answer

π4x2\frac { \pi } { 4 } - \frac { x } { 2 }

Explanation

Solution

tan1[cosx1+sinx]=tan1[sin(π/2x)1+cos(π/2x)]\tan ^ { - 1 } \left[ \frac { \cos x } { 1 + \sin x } \right] = \tan ^ { - 1 } \left[ \frac { \sin ( \pi / 2 - x ) } { 1 + \cos ( \pi / 2 - x ) } \right]

=tan1[2sin(π/4x/2)cos(π/4x/2)2cos2(π/4x/2)]= \tan ^ { - 1 } \left[ \frac { 2 \sin ( \pi / 4 - x / 2 ) \cos ( \pi / 4 - x / 2 ) } { 2 \cos ^ { 2 } ( \pi / 4 - x / 2 ) } \right]

=tan1tan(π4x2)=π4x2= \tan ^ { - 1 } \tan \left( \frac { \pi } { 4 } - \frac { x } { 2 } \right) = \frac { \pi } { 4 } - \frac { x } { 2 }.