Solveeit Logo

Question

Question: \(\sin \left( \cot ^ { - 1 } x \right)\)...

sin(cot1x)\sin \left( \cot ^ { - 1 } x \right)

A

1+x2\sqrt { 1 + x ^ { 2 } }

B

xx

C

(1+x2)3/2\left( 1 + x ^ { 2 } \right) ^ { - 3 / 2 }

D

(1+x2)1/2\left( 1 + x ^ { 2 } \right) ^ { - 1 / 2 }

Answer

(1+x2)1/2\left( 1 + x ^ { 2 } \right) ^ { - 1 / 2 }

Explanation

Solution

Let cot1x=θx=cotθ\cot ^ { - 1 } x = \theta \Rightarrow x = \cot \theta

Now cosecθ=1+cot2θ=1+x2\operatorname { cosec } \theta = \sqrt { 1 + \cot ^ { 2 } \theta } = \sqrt { 1 + x ^ { 2 } }

sinθ=1cosecθ=11+x2θ=sin111+x2\therefore \sin \theta = \frac { 1 } { \operatorname { cosec } \theta } = \frac { 1 } { \sqrt { 1 + x ^ { 2 } } } \Rightarrow \theta = \sin ^ { - 1 } \frac { 1 } { \sqrt { 1 + x ^ { 2 } } }

Hence sin(cot1x)=sin(sin111+x2)\sin \left( \cot ^ { - 1 } x \right) = \sin \left( \sin ^ { - 1 } \frac { 1 } { \sqrt { 1 + x ^ { 2 } } } \right)

=11+x2=(1+x2)1/2= \frac { 1 } { \sqrt { 1 + x ^ { 2 } } } = \left( 1 + x ^ { 2 } \right) ^ { - 1 / 2 }.