Solveeit Logo

Question

Question: \(\int _ { 0 } ^ { \pi / 2 } \frac { \sin x \cos x d x } { \cos ^ { 2 } x + 3 \cos x + 2 } =\)...

0π/2sinxcosxdxcos2x+3cosx+2=\int _ { 0 } ^ { \pi / 2 } \frac { \sin x \cos x d x } { \cos ^ { 2 } x + 3 \cos x + 2 } =

A

log(89)\log \left( \frac { 8 } { 9 } \right)

B

log(98)\log \left( \frac { 9 } { 8 } \right)

C

log(8×9)\log ( 8 \times 9 )

D

None of these

Answer

log(98)\log \left( \frac { 9 } { 8 } \right)

Explanation

Solution

Let I=0π/2sinxcosxdxcos2x+3cosx+2I = \int _ { 0 } ^ { \pi / 2 } \frac { \sin x \cos x \cdot d x } { \cos ^ { 2 } x + 3 \cos x + 2 }

We put cosx=tsinxdx=dt\cos x = t \Rightarrow - \sin x d x = d t then

=[2log(t+2)log(t+1)]01= [ 2 \log ( t + 2 ) - \log ( t + 1 ) ] _ { 0 } ^ { 1 } =[2log3log22log2]= [ 2 \log 3 - \log 2 - 2 \log 2 ]

=[2log33log2]=[log9log8]=log(98)= [ 2 \log 3 - 3 \log 2 ] = [ \log 9 - \log 8 ] = \log \left( \frac { 9 } { 8 } \right) .