Solveeit Logo

Question

Question: \(\int _ { \pi / 4 } ^ { \pi / 2 } e ^ { x } ( \log \sin x + \cot x ) d x =\)...

π/4π/2ex(logsinx+cotx)dx=\int _ { \pi / 4 } ^ { \pi / 2 } e ^ { x } ( \log \sin x + \cot x ) d x =

A

eπ/4log2e ^ { \pi / 4 } \log 2

B

eπ/4log2- e ^ { \pi / 4 } \log 2

C

12eπ/4log2\frac { 1 } { 2 } e ^ { \pi / 4 } \log 2

D

12eπ/4log2- \frac { 1 } { 2 } e ^ { \pi / 4 } \log 2

Answer

12eπ/4log2\frac { 1 } { 2 } e ^ { \pi / 4 } \log 2

Explanation

Solution

Let I=π/4π/2ex(logsinx+cotx)dxI = \int _ { \pi / 4 } ^ { \pi / 2 } e ^ { x } ( \log \sin x + \cot x ) d x

I=π/4π/2exlogsinxdx+π/4π/2excotxdxI = \int _ { \pi / 4 } ^ { \pi / 2 } e ^ { x } \log \sin x d x + \int _ { \pi / 4 } ^ { \pi / 2 } e ^ { x } \cot x d x

=π/4π/2exlogsinxdx+[exlogsinx]π/4π/2= \int _ { \pi / 4 } ^ { \pi / 2 } e ^ { x } \log \sin x d x + \left[ e ^ { x } \log \sin x \right] _ { \pi / 4 } ^ { \pi / 2 }

π/4π/2exlogsinxdx- \int _ { \pi / 4 } ^ { \pi / 2 } e ^ { x } \log \sin x d x

=eπ/2logsinπ2eπ/4logsinπ4=12eπ/4log2= e ^ { \pi / 2 } \log \sin \frac { \pi } { 2 } - e ^ { \pi / 4 } \log \sin \frac { \pi } { 4 } = \frac { 1 } { 2 } e ^ { \pi / 4 } \log 2 .