Question
Question: \(\int _ { \pi / 4 } ^ { \pi / 2 } e ^ { x } ( \log \sin x + \cot x ) d x =\)...
∫π/4π/2ex(logsinx+cotx)dx=
A
eπ/4log2
B
−eπ/4log2
C
21eπ/4log2
D
−21eπ/4log2
Answer
21eπ/4log2
Explanation
Solution
Let I=∫π/4π/2ex(logsinx+cotx)dx
I=∫π/4π/2exlogsinxdx+∫π/4π/2excotxdx
=∫π/4π/2exlogsinxdx+[exlogsinx]π/4π/2
−∫π/4π/2exlogsinxdx
=eπ/2logsin2π−eπ/4logsin4π=21eπ/4log2 .