Solveeit Logo

Question

Question: \(\int _ { 0 } ^ { \pi / 4 } \frac { \sin x + \cos x } { 9 + 16 \sin 2 x } d x =\)...

0π/4sinx+cosx9+16sin2xdx=\int _ { 0 } ^ { \pi / 4 } \frac { \sin x + \cos x } { 9 + 16 \sin 2 x } d x =

A

120log3\frac { 1 } { 20 } \log 3

B

log3\log 3

C

120log5\frac { 1 } { 20 } \log 5

D

None of these

Answer

120log3\frac { 1 } { 20 } \log 3

Explanation

Solution

Let I=0π/4sinx+cosx9+16sin2xdxI = \int _ { 0 } ^ { \pi / 4 } \frac { \sin x + \cos x } { 9 + 16 \sin 2 x } d x

Put sinxcosx=t\sin x - \cos x = t, then (sinx+cosx)dx=dt( \sin x + \cos x ) d x = d t

I=10dt9+16(1t2)=10dt2516t2I = \int _ { - 1 } ^ { 0 } \frac { d t } { 9 + 16 \left( 1 - t ^ { 2 } \right) } = \int _ { - 1 } ^ { 0 } \frac { d t } { 25 - 16 t ^ { 2 } }

=11010(154t+15+4t)dt= \frac { 1 } { 10 } \int _ { - 1 } ^ { 0 } \left( \frac { 1 } { 5 - 4 t } + \frac { 1 } { 5 + 4 t } \right) d t

=11014[log(5+4t)log(54t)]10= \left| \frac { 1 } { 10 } \cdot \frac { 1 } { 4 } [ \log ( 5 + 4 t ) - \log ( 5 - 4 t ) ] \right| _ { - 1 } ^ { 0 }

=140(log9log1)=120log3= \frac { 1 } { 40 } ( \log 9 - \log 1 ) = \frac { 1 } { 20 } \log 3.