Solveeit Logo

Question

Question: \(\int _ { 0 } ^ { 1 } \sin ^ { - 1 } \left( \frac { 2 x } { 1 + x ^ { 2 } } \right) d x =\)...

01sin1(2x1+x2)dx=\int _ { 0 } ^ { 1 } \sin ^ { - 1 } \left( \frac { 2 x } { 1 + x ^ { 2 } } \right) d x =

A

π22log2\frac { \pi } { 2 } - 2 \log \sqrt { 2 }

B

π2+2log2\frac { \pi } { 2 } + 2 \log \sqrt { 2 }

C

π4log2\frac { \pi } { 4 } - \log \sqrt { 2 }

D

π4+log2\frac { \pi } { 4 } + \log \sqrt { 2 }

Answer

π22log2\frac { \pi } { 2 } - 2 \log \sqrt { 2 }

Explanation

Solution

Put x=tanθx = \tan \theta dx=sec2θdθd x = \sec ^ { 2 } \theta d \theta

As x=1θ=π4x = 1 \Rightarrow \theta = \frac { \pi } { 4 } and x=0θ=0x = 0 \Rightarrow \theta = 0, then

I=20π/4θsec2θdθ=2[θtanθ]0π/420π/4tanθdθI = 2 \int _ { 0 } ^ { \pi / 4 } \theta \sec ^ { 2 } \theta d \theta = 2 [ \theta \tan \theta ] _ { 0 } ^ { \pi / 4 } - 2 \int _ { 0 } ^ { \pi / 4 } \tan \theta d \theta

= π2+2[logcosx]0π/4=π22log2\frac { \pi } { 2 } + 2 [ \log \cos x ] _ { 0 } ^ { \pi / 4 } = \frac { \pi } { 2 } - 2 \log \sqrt { 2 }.