Solveeit Logo

Question

Question: \(\int _ { 0 } ^ { \pi / 2 } \frac { \cos x } { ( 1 + \sin x ) ( 2 + \sin x ) } d x =\)...

0π/2cosx(1+sinx)(2+sinx)dx=\int _ { 0 } ^ { \pi / 2 } \frac { \cos x } { ( 1 + \sin x ) ( 2 + \sin x ) } d x =

A

log43\log \frac { 4 } { 3 }

B

log13\log \frac { 1 } { 3 }

C

log34\log \frac { 3 } { 4 }

D

None of these

Answer

log43\log \frac { 4 } { 3 }

Explanation

Solution

Put sinx=tcosxdx=dt\sin x = t \Rightarrow \cos x d x = d t so that reduced integral is 01(11+t12+t)dt=[log(1+t)log(2+t)]01\int _ { 0 } ^ { 1 } \left( \frac { 1 } { 1 + t } - \frac { 1 } { 2 + t } \right) d t = [ \log ( 1 + t ) - \log ( 2 + t ) ] _ { 0 } ^ { 1 }

=log23log12=log43= \log \frac { 2 } { 3 } - \log \frac { 1 } { 2 } = \log \frac { 4 } { 3 }.