Question
Question: \(\int _ { 0 } ^ { 1 } \sin \left( 2 \tan ^ { - 1 } \sqrt { \frac { 1 + x } { 1 - x } } \right) d x ...
∫01sin(2tan−11−x1+x)dx=
A
π/6
B
π/4
C
π/2
D
π
Answer
π/4
Explanation
Solution
∫01sin(2tan−11−x1+x)dx
Put sin[2tan−11−cosθ1+cosθ]
=sin[2tan−1(cot2θ)]
=sin[2tan−1[tan(2π−2θ)]]=sin[2(2π−2θ)]
=sin(π−θ)=sinθ=1−cos2θ=1−x2
Now, ∫01sin(2tan−11−x1+x)dx=∫011−x2dx