Solveeit Logo

Question

Question: \(\int _ { 0 } ^ { 1 } \sin \left( 2 \tan ^ { - 1 } \sqrt { \frac { 1 + x } { 1 - x } } \right) d x ...

01sin(2tan11+x1x)dx=\int _ { 0 } ^ { 1 } \sin \left( 2 \tan ^ { - 1 } \sqrt { \frac { 1 + x } { 1 - x } } \right) d x =

A

π/6\pi / 6

B

π/4\pi / 4

C

π/2\pi / 2

D

π\pi

Answer

π/4\pi / 4

Explanation

Solution

01sin(2tan11+x1x)dx\int _ { 0 } ^ { 1 } \sin \left( 2 \tan ^ { - 1 } \sqrt { \frac { 1 + x } { 1 - x } } \right) d x

Put sin[2tan11+cosθ1cosθ]\sin \left[ 2 \tan ^ { - 1 } \sqrt { \frac { 1 + \cos \theta } { 1 - \cos \theta } } \right]

=sin[2tan1(cotθ2)]= \sin \left[ 2 \tan ^ { - 1 } \left( \cot \frac { \theta } { 2 } \right) \right]

=sin[2tan1[tan(π2θ2)]]=sin[2(π2θ2)]= \sin \left[ 2 \tan ^ { - 1 } \left[ \tan \left( \frac { \pi } { 2 } - \frac { \theta } { 2 } \right) \right] \right] = \sin \left[ 2 \left( \frac { \pi } { 2 } - \frac { \theta } { 2 } \right) \right]

=sin(πθ)=sinθ=1cos2θ=1x2= \sin ( \pi - \theta ) = \sin \theta = \sqrt { 1 - \cos ^ { 2 } \theta } = \sqrt { 1 - x ^ { 2 } }

Now, 01sin(2tan11+x1x)dx=011x2dx\int _ { 0 } ^ { 1 } \sin \left( 2 \tan ^ { - 1 } \sqrt { \frac { 1 + x } { 1 - x } } \right) d x = \int _ { 0 } ^ { 1 } \sqrt { 1 - x ^ { 2 } } d x