Solveeit Logo

Question

Question: \(\int _ { 0 } ^ { \pi / 4 } \sec x \log ( \sec x + \tan x ) d x =\)...

0π/4secxlog(secx+tanx)dx=\int _ { 0 } ^ { \pi / 4 } \sec x \log ( \sec x + \tan x ) d x =

A

12[log(1+2)]2\frac { 1 } { 2 } [ \log ( 1 + \sqrt { 2 } ) ] ^ { 2 }

B

[log(1+2)]2[ \log ( 1 + \sqrt { 2 } ) ] ^ { 2 }

C

12[log(21)]2\frac { 1 } { 2 } [ \log ( \sqrt { 2 } - 1 ) ] ^ { 2 }

D

[log(21)]2[ \log ( \sqrt { 2 } - 1 ) ] ^ { 2 }

Answer

12[log(1+2)]2\frac { 1 } { 2 } [ \log ( 1 + \sqrt { 2 } ) ] ^ { 2 }

Explanation

Solution

I=0π/4secxlog(secx+tanx)dxI = \int _ { 0 } ^ { \pi / 4 } \sec x \log ( \sec x + \tan x ) d x

Put log(secx+tanx)=tsecxdx=dt\log ( \sec x + \tan x ) = t \Rightarrow \sec x d x = d t

I=0log(2+1)tdt=[t22]0log(2+1)=[log(2+1)]22\Rightarrow I = \int _ { 0 } ^ { \log ( \sqrt { 2 } + 1 ) } t d t = \left[ \frac { t ^ { 2 } } { 2 } \right] _ { 0 } ^ { \log ( \sqrt { 2 } + 1 ) } = \frac { [ \log ( \sqrt { 2 } + 1 ) ] ^ { 2 } } { 2 }.