Solveeit Logo

Question

Question: \(\int _ { 0 } ^ { \pi / 2 } \frac { \cos x } { 1 + \cos x + \sin x } d x =\)...

0π/2cosx1+cosx+sinxdx=\int _ { 0 } ^ { \pi / 2 } \frac { \cos x } { 1 + \cos x + \sin x } d x =

A

π4+12log2\frac { \pi } { 4 } + \frac { 1 } { 2 } \log 2

B

π4+log2\frac { \pi } { 4 } + \log 2

C

π412log2\frac { \pi } { 4 } - \frac { 1 } { 2 } \log 2

D

π4log2\frac { \pi } { 4 } - \log 2

Answer

π412log2\frac { \pi } { 4 } - \frac { 1 } { 2 } \log 2

Explanation

Solution

0π/2cosx1+cosx+sinxdx\int _ { 0 } ^ { \pi / 2 } \frac { \cos x } { 1 + \cos x + \sin x } d x

=0π/2cos2(x/2)sin2(x/2)2cos2(x/2)+2sin(x/2)cos(x/2)dx= \int _ { 0 } ^ { \pi / 2 } \frac { \cos ^ { 2 } ( x / 2 ) - \sin ^ { 2 } ( x / 2 ) } { 2 \cos ^ { 2 } ( x / 2 ) + 2 \sin ( x / 2 ) \cos ( x / 2 ) } d x

=120π/21tan2(x/2)1+tan(x/2)dx=120π/2[1tan(x2)]dx= \frac { 1 } { 2 } \int _ { 0 } ^ { \pi / 2 } \frac { 1 - \tan ^ { 2 } ( x / 2 ) } { 1 + \tan ( x / 2 ) } d x = \frac { 1 } { 2 } \int _ { 0 } ^ { \pi / 2 } \left[ 1 - \tan \left( \frac { x } { 2 } \right) \right] d x

π4+log12=π412log2\frac { \pi } { 4 } + \log \frac { 1 } { \sqrt { 2 } } = \frac { \pi } { 4 } - \frac { 1 } { 2 } \log 2 .