Question
Question: \(\int _ { 0 } ^ { a } \frac { x ^ { 4 } d x } { \left( a ^ { 2 } + x ^ { 2 } \right) ^ { 4 } } =\)...
∫0a(a2+x2)4x4dx=
A
16a31(4π−31)
B
16a31(4π+31)
C
161a3(4π−31)
D
161a3(4π+31)
Answer
16a31(4π−31)
Explanation
Solution
Put x=atanθ⇒dx=asec2θdθ then we have
I=∫0π/4a8sec8θa4tan4θ⋅asec2θdθ
⇒ a31∫0π/4sin4θcos2θdθ=I=a31[∫0π/4(sin4θ−sin6θ]dθ
=a31∫0π/4[4(1−cos2θ)2−8(1−cos2θ)3]dθ
=8a31∫0π/4(1+cos2θ)(1+cos22θ−2cos2θ)dθ
=8a31∫0π/4(1−cos2θ−cos22θ+cos32θ)dθ
=32a31∫0π/4(2−cos2θ−2cos4θ+cos6θ)dθ
=32a31[2θ−2sin2θ−2sin4θ+6sin6θ]0π/4
=16a31(4π−31).