Solveeit Logo

Question

Question: \(\int _ { \pi / 4 } ^ { \pi / 2 } \cos \theta \operatorname { cosec } ^ { 2 } \theta d \theta =\)...

π/4π/2cosθcosec2θdθ=\int _ { \pi / 4 } ^ { \pi / 2 } \cos \theta \operatorname { cosec } ^ { 2 } \theta d \theta =

A

21\sqrt { 2 } - 1

B

121 - \sqrt { 2 }

C

2+1\sqrt { 2 } + 1

D

None of these

Answer

21\sqrt { 2 } - 1

Explanation

Solution

Let π/4π/2cosθ1sin2θdθ\int _ { \pi / 4 } ^ { \pi / 2 } \cos \theta \frac { 1 } { \sin ^ { 2 } \theta } d \theta

Put t=sinθdt=cosθdθt = \sin \theta \Rightarrow d t = \cos \theta d \theta then we have

1/211t2dt=[1t]1/21=21\int _ { 1 / \sqrt { 2 } } ^ { 1 } \frac { 1 } { t ^ { 2 } } d t = \left[ \frac { - 1 } { t } \right] _ { 1 / \sqrt { 2 } } ^ { 1 } = \sqrt { 2 } - 1.