Solveeit Logo

Question

Question: \(\int _ { 0 } ^ { 1 } \tan ^ { - 1 } x d x =\)...

01tan1xdx=\int _ { 0 } ^ { 1 } \tan ^ { - 1 } x d x =

A

π412log2\frac { \pi } { 4 } - \frac { 1 } { 2 } \log 2

B

π12log2\pi - \frac { 1 } { 2 } \log 2

C

π4log2\frac { \pi } { 4 } - \log 2

D

πlog2\pi - \log 2

Answer

π412log2\frac { \pi } { 4 } - \frac { 1 } { 2 } \log 2

Explanation

Solution

Put x=tanθdx=sec2θdθx = \tan \theta \Rightarrow d x = \sec ^ { 2 } \theta d \theta

Also as x=0,θ=0x = 0 , \theta = 0and x=1,θ=π4x = 1 , \theta = \frac { \pi } { 4 }

Therefore, 01tan1xdx=0π/4θsec2θdθ\int _ { 0 } ^ { 1 } \tan ^ { - 1 } x d x = \int _ { 0 } ^ { \pi / 4 } \theta \sec ^ { 2 } \theta d \theta

=π4= \frac { \pi } { 4 } log2=π412log2- \log \sqrt { 2 } = \frac { \pi } { 4 } - \frac { 1 } { 2 } \log 2 .