Solveeit Logo

Question

Question: \(\int _ { a } ^ { b } \frac { \log x } { x } d x =\)...

ablogxxdx=\int _ { a } ^ { b } \frac { \log x } { x } d x =

A

log(logbloga)\log \left( \frac { \log b } { \log a } \right)

B

log(ab)log(ba)\log ( a b ) \log \left( \frac { b } { a } \right)

C

12log(ab)log(ba)\frac { 1 } { 2 } \log ( a b ) \log \left( \frac { b } { a } \right)

D

12log(ab)log(ab)\frac { 1 } { 2 } \log ( a b ) \log \left( \frac { a } { b } \right)

Answer

12log(ab)log(ba)\frac { 1 } { 2 } \log ( a b ) \log \left( \frac { b } { a } \right)

Explanation

Solution

Let I=ab1xlogxdx=(logxlogx)abI = \int _ { a } ^ { b } \frac { 1 } { x } \log x d x = ( \log x \log x ) _ { a } ^ { b } ab1xlogxdx- \int _ { a } ^ { b } \frac { 1 } { x } \log x d x

2I=[(logx)2]abI=12[(logb)2(loga)2]\Rightarrow 2 I = \left[ ( \log x ) ^ { 2 } \right] _ { a } ^ { b } \Rightarrow I = \frac { 1 } { 2 } \left[ ( \log b ) ^ { 2 } - ( \log a ) ^ { 2 } \right]

=12[(logb+loga)(logbloga)]= \frac { 1 } { 2 } [ ( \log b + \log a ) ( \log b - \log a ) ]=12log(ab)log(ba)\frac { 1 } { 2 } \log ( a b ) \log \left( \frac { b } { a } \right).