Solveeit Logo

Question

Question: \(\int _ { \pi / 6 } ^ { \pi / 4 } \operatorname { cosec } 2 x d x =\)...

π/6π/4cosec2xdx=\int _ { \pi / 6 } ^ { \pi / 4 } \operatorname { cosec } 2 x d x =

A

log3\log 3

B

log3\log \sqrt { 3 }

C

log9\log 9

D

None of these

Answer

None of these

Explanation

Solution

π/6π/4cosec2xdx=12[logtanx]π/6π/4\int _ { \pi / 6 } ^ { \pi / 4 } \operatorname { cosec } 2 x d x = \frac { 1 } { 2 } [ \log \tan x ] _ { \pi / 6 } ^ { \pi / 4 }

=12[logtanπ4logtanπ6]=12log3= \frac { 1 } { 2 } \left[ \log \tan \frac { \pi } { 4 } - \log \tan \frac { \pi } { 6 } \right] = \frac { 1 } { 2 } \log \sqrt { 3 }.